Publication:
Orthogonal Distance From an Ellipsoid; Distancia Ortogonal a Partir De Um Elipsóide

Loading...
Thumbnail Image

Date

Journal Title

Journal ISSN

Volume Title

Research Projects

Organizational Units

Journal Issue

Abstract

Finding the orthogonal (shortest) distance to an ellipsoid corresponds to the ellipsoidal height in Geodesy. Despite that the commonly used Earth reference systems, like WGS-84, are based on rotational ellipsoids, there have also been over the course of the years permanent scientific investigations undertaken into different aspects of the triaxial ellipsoid. Geodetic research has traditionally been motivated by the need to approximate closer and closer the physical reality. Several investigations have shown that the earth is approximated better by a triaxial ellipsoid rather than a rotational one Burša and Šima (1980). The problem of finding the shortest distance is encountered frequently in the Cartesian- Geodetic coordinate transformation, optimization problem, fitting ellipsoid, image processing, face recognition, computer games, and so on. We have chosen a triaxial ellipsoid for the reason that it possesess a general surface. Thus, the minimum distance from rotational ellipsoid and sphere is found with the same algorithm. This study deals with the computation of the shortest distance from a point to a triaxial ellipsoid. © 2014, Universidade Federal do Parana. All rights reserved.

Description

Citation

WoS Q

Scopus Q

Q3

Source

Boletim de Ciencias Geodesicas

Volume

20

Issue

4

Start Page

970

End Page

983

Endorsement

Review

Supplemented By

Referenced By