Publication:
Monte Carlo Study on Size-Dependent Radiation Enhancement Effects of Spinel Ferrite Nanoparticles

dc.authorscopusid57210339426
dc.authorscopusid57298614600
dc.authorscopusid57202340458
dc.authorscopusid55900600100
dc.authorwosidBilmez, Bayram/Aaa-5054-2022
dc.contributor.authorBilmez, Bayram
dc.contributor.authorToker, Melis Ozsahin
dc.contributor.authorToker, Ozan
dc.contributor.authorIcelli, Orhan
dc.contributor.authorIDBilmez, Bayram/0000-0002-5687-2145
dc.contributor.authorIDToker, Ozan/0000-0002-5566-0298
dc.date.accessioned2025-12-11T01:21:55Z
dc.date.issued2022
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Bilmez, Bayram; Toker, Melis Ozsahin; Toker, Ozan; Icelli, Orhan] Yildiz Tech Univ, Sci & Art Fac, Dept Phys, Istanbul, Turkey; [Bilmez, Bayram] Ondokuz Mayis Univ, Sci & Art Fac, Dept Phys, Samsun, Turkeyen_US
dc.descriptionBilmez, Bayram/0000-0002-5687-2145; Toker, Ozan/0000-0002-5566-0298en_US
dc.description.abstractThis study investigates the effect of adding spinel ferrite nanoparticles to tissues irradiated with low energy photons and simulated effect of particle size on dosimetry quantities. The simulations have been carried out with MCNP 6.2 code which enables event-by-event electron transport. Firstly, dose enhancement factors have been determined with water/ferrite mixture and for MnFe2O4, CoFe2O4, Fe3O4, NiFe2O4, ZnFe2O4, at 5,10, and 20 mgg(-1) concentrations and individual nanoparticles of Fe3O4 in a 1 cm(3) volume. Source photons used were iodine-125 spectrum and X-rays spectra with tube voltages 50 kVp, 100 kVp. The dose enhancement with 50 kVp source go as high as 1.73 with 20 mgg(-1) NP concentration, whereas with 100 kVp source, it drops to 1.13 with 5 mgg(-1). In a different simulation, an endothelial cell of tumor vasculature with nanoparticles attached to its surface has been modeled to handle the cellular level effects. The amount of self-absorption versus absorption in the cell has been compared for different particles size. Also, we presented the electron spectrum leaving the nanoparticle surfaces entering the cell volume. To achieve realistic dose enhancement for the macro scale, either high concentrations or very low photon energies are required. In the cellular scale simulations, results indicate an extraordinary difference in low energy electron spectrum, which contribute much to energy deposition within the vicinity of nanoparticles, showing the importance of targeting.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1016/j.radphyschem.2022.110364
dc.identifier.issn0969-806X
dc.identifier.issn1879-0895
dc.identifier.scopus2-s2.0-85133470212
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1016/j.radphyschem.2022.110364
dc.identifier.urihttps://hdl.handle.net/20.500.12712/43259
dc.identifier.volume199en_US
dc.identifier.wosWOS:000861552500004
dc.identifier.wosqualityQ1
dc.language.isoenen_US
dc.publisherPergamon-Elsevier Science Ltden_US
dc.relation.ispartofRadiation Physics and Chemistryen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDose Enhancementen_US
dc.subjectMCNPen_US
dc.subjectMonte Carloen_US
dc.subjectParticle Size Effecten_US
dc.subjectSpinel Ferritesen_US
dc.titleMonte Carlo Study on Size-Dependent Radiation Enhancement Effects of Spinel Ferrite Nanoparticlesen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files