Publication:
Estimation of Mung Bean [Vigna radiata (L.) Wilczek] Pod Shell Rate Using Curve Fitting and Artificial Neural Network Techniques

dc.authorscopusid57518966700
dc.authorscopusid21743556600
dc.authorscopusid57259470100
dc.authorwosidKaraman, Ruziye/Adn-4086-2022
dc.authorwosidOdabas, Mehmet/Agy-1382-2022
dc.authorwosidTürkay, Cengiz/Afh-6144-2022
dc.authorwosidKaraman, Ruzi̇ye/Adn-4086-2022
dc.contributor.authorKaraman, Ruziye
dc.contributor.authorOdabas, Mehmet Serhat
dc.contributor.authorTurkay, Cengiz
dc.contributor.authorIDTürkay, Cengiz/0000-0003-3857-0140
dc.contributor.authorIDKaraman, Ruzi̇ye/0000-0001-5088-8253
dc.date.accessioned2025-12-11T01:18:24Z
dc.date.issued2024
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Karaman, Ruziye; Turkay, Cengiz] Isparta Univ Appl Sci, Agr Fac, Dept Field Crops, Isparta, Turkiye; [Odabas, Mehmet Serhat] Ondokuz Mayis Univ, Bafra Vocat Sch, Samsun TR-55270, Turkiyeen_US
dc.descriptionTürkay, Cengiz/0000-0003-3857-0140; Karaman, Ruzi̇ye/0000-0001-5088-8253en_US
dc.description.abstractMung beans are a nutrient-dense dietary option since they are low in fat and high in fiber, protein, and vitamins. Estimating the amount of pod shells is important because it gives information about the amount of seeds contained in the pods and indirectly about the yield. The study aimed to predict the pod shell rate of mung bean genotypes and cultivars in pod and seed sizes by using curving fitting and artificial neural networks. The produced equation for predicting of shell weight rate of the genotypes and varieties was formulized as SWR = (-1.349e-13)-13 ) + (0.999 x TW) + (0.999 x SIW) + (1.416e-18-18 x TW2) 2 )- [1.908e-17-17 x (TW x SIW)] where SWR is shell weight rate, TW is total weight, and SIW is seed internal weight. On the other hand, this research discusses the use of an artificial neural network (ANN) model to predict the shell rate of legumes based on various input parameters such as pod length, pod width, pod thickness, seed length, seed width, and seed thickness. The R2 2 values obtained from the ANN analysis indicate that the model predicts shell rate with 87% accuracy.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1590/1678-4324-2024230283
dc.identifier.issn1516-8913
dc.identifier.issn1678-4324
dc.identifier.scopus2-s2.0-85203048156
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.1590/1678-4324-2024230283
dc.identifier.urihttps://hdl.handle.net/20.500.12712/42730
dc.identifier.volume67en_US
dc.identifier.wosWOS:001286330800001
dc.identifier.wosqualityQ3
dc.language.isoenen_US
dc.publisherInst Tecnologia Paranaen_US
dc.relation.ispartofBrazilian Archives of Biology and Technologyen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectMung Beanen_US
dc.subjectCurve Fittingen_US
dc.subjectArtificial Neural Networken_US
dc.subjectSeed Dimensionen_US
dc.subjectPod Dimensionen_US
dc.titleEstimation of Mung Bean [Vigna radiata (L.) Wilczek] Pod Shell Rate Using Curve Fitting and Artificial Neural Network Techniquesen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files