Publication:
Enhanced Prediction of Ozone Concentrations Using an Artificial Neural Network Model

dc.authorscopusid57197735444
dc.authorscopusid16241437600
dc.authorscopusid59525655800
dc.authorscopusid57004889300
dc.authorscopusid57192995480
dc.authorscopusid8577767500
dc.contributor.authorUguz, G.
dc.contributor.authorKaradurmus, E.
dc.contributor.authorKaya, S.
dc.contributor.authorGoz, E.
dc.contributor.authorAkyazi, H.
dc.contributor.authorYuceer, M.
dc.date.accessioned2025-12-11T00:35:40Z
dc.date.issued2025
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Uguz, G.] Ondokuz Mayis Univ, Chem Engn Dept, Samsun, Turkiye; [Karadurmus, E.] Hitit Univ, Chem Engn Dept, Corum, Turkiye; [Kaya, S.] Minist Environm Urbanisat & Climate Change, Samsun, Turkiye; [Goz, E.] Ankara Univ, Chem Engn Dept, Ankara, Turkiye; [Akyazi, H.] Ankara Univ, Beypazari Vocat Sch, Property Protect & Secur, Ankara, Turkiye; [Yuceer, M.] Inonu Univ, Chem Engn Dept, Malatya, Turkiyeen_US
dc.description.abstractThe primary goal of this research was to develop an Artificial Neural Network (ANN) model to predict ozone (O3) concentrations using hourly data obtained from a monitoring station in Samsun City, located in the Middle Black Sea Region of Turkey. The dataset utilized encompassed the years from 2016 to 2020. The ANN architecture incorporated eleven input nodes representing various parameters: month, hour, concentrations of particulate matter (PM2.5 and PM10), nitrogen oxides (NOx), wind direction, relative humidity, air temperature, wind speed, cabin temperature of the measuring station, and air pressure. The focus of the model's output was on predicting the O3 concentration. During the training and testing phases, the ANN model displayed outstanding performance, as evidenced by correlation coefficients nearing one. The model also registered minimal values for Mean Absolute Percentage Error (MAPE, %), Mean Absolute Error (MAE) and Root Mean Square Error (RMSE). In the training phase, the model achieved a Training R-value of 0.9993, an RMSE of 0.7424, a M APE of 4.3221 %, and a MAE of 0.5301. The testing phase showed equally strong results, with a Test R-value of 0.9990, an RMSE of 0.8595, a M APE of 4.5642 %, and an MAE of 0.5823. These outcomes emphasize the model's ability to accurately predict ozone concentrations, markedly enhancing the precision compared to previous models based on traditional statistical methods. The findings of this study highlight the potential of this ANN model in providing precise ozone concentration readings in the atmosphere. The proposed ANN model distinguishes itself from previous studies by incorporating more representative variables as inputs, significantly boosting prediction accuracy. Additionally, the removal of outliers during preprocessing enhances data quality, thereby increasing the reliability of the predictions. Despite its simple structure, the model demonstrates high performance, making it both innovative and effective in comparison to earlier models. Moreover, the model's superior performance may reduce the need for additional measurement devices at newly established monitoring stations.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.52292/j.laar.2025.3489
dc.identifier.endpage142en_US
dc.identifier.issn0327-0793
dc.identifier.issn1851-8796
dc.identifier.issue1en_US
dc.identifier.scopus2-s2.0-85215837552
dc.identifier.scopusqualityQ3
dc.identifier.startpage137en_US
dc.identifier.urihttps://doi.org/10.52292/j.laar.2025.3489
dc.identifier.urihttps://hdl.handle.net/20.500.12712/37700
dc.identifier.volume55en_US
dc.identifier.wosWOS:001472542100001
dc.identifier.wosqualityQ4
dc.language.isoenen_US
dc.publisherPlapiqui(uns-conicet)en_US
dc.relation.ispartofLatin American Applied Researchen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectArtificial Neural Networksen_US
dc.subjectOzone Predictionen_US
dc.subjectAir Quality Monitoringen_US
dc.subjectEnvironmental Modelingen_US
dc.subjectParticulate Matteren_US
dc.subjectPredictive Analyticsen_US
dc.titleEnhanced Prediction of Ozone Concentrations Using an Artificial Neural Network Modelen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files