Publication:
The Best Fit Bayesian Hierarchical Generalized Linear Model Selection Using Information Complexity Criteria in the MCMC Approach

dc.authorscopusid57194461200
dc.authorscopusid12766595200
dc.authorscopusid55807479300
dc.authorwosidEbrahim, Enis Assen/Aia-7136-2022
dc.authorwosidCengiz, Mehmet/Agz-9391-2022
dc.authorwosidEbrahim, Endris/Aia-7136-2022
dc.contributor.authorEbrahim, Endris Assen
dc.contributor.authorCengiz, Mehmet Ali
dc.contributor.authorTerzi, Erol
dc.contributor.authorIDTerzi, Erol/0000-0002-2309-827X
dc.contributor.authorIDEbrahim, Enis Assen/0000-0002-8959-6052
dc.date.accessioned2025-12-11T01:16:09Z
dc.date.issued2024
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Ebrahim, Endris Assen] Debre Tabor Univ, Coll Nat & Computat Sci, Dept Stat, South Gondar, Ethiopia; [Cengiz, Mehmet Ali; Terzi, Erol] Ondokuz Mayis Univ, Inst Grad Studies, Fac Sci & Art, Dept Stat, Samsun, Turkiyeen_US
dc.descriptionTerzi, Erol/0000-0002-2309-827X; Ebrahim, Enis Assen/0000-0002-8959-6052;en_US
dc.description.abstractBoth frequentist and Bayesian statistics schools have improved statistical tools and model choices for the collected data or measurements. Model selection approaches have advanced due to the difficulty of comparing complicated hierarchical models in which linear predictors vary by grouping variables, and the number of model parameters is not distinct. Many regression model selection criteria are considered, including the maximum likelihood (ML) point estimation of the parameter and the logarithm of the likelihood of the dataset. This paper demonstrates the information complexity (ICOMP), Bayesian deviance information, or the widely applicable information criterion (WAIC) of the BRMS to hierarchical linear models fitted with repeated measures with a simulation and two real data examples. The Fisher information matrix for the Bayesian hierarchical model considering fixed and random parameters under maximizing a posterior estimation is derived. Using Gibbs sampling and Hybrid Hamiltonian Monte Carlo approaches, six different models were fitted for three distinct application datasets. The best-fitted candidate models were identified under each application dataset with the two MCMC approaches. In this case, the Bayesian hierarchical (mixed effect) linear model with random intercepts and random slopes estimated using the Hamiltonian Monte Carlo method best fits the two application datasets. Information complexity (ICOMP) is a better indicator of the best-fitted models than DIC and WAIC. In addition, the information complexity criterion showed that hierarchical models with gradient-based Hamiltonian Monte Carlo estimation are the best fit and have supper convergence relative to the gradient-free Gibbs sampling methods.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1155/2024/1459524
dc.identifier.issn2314-4629
dc.identifier.issn2314-4785
dc.identifier.scopus2-s2.0-85185156922
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1155/2024/1459524
dc.identifier.urihttps://hdl.handle.net/20.500.12712/42507
dc.identifier.volume2024en_US
dc.identifier.wosWOS:001160392700001
dc.identifier.wosqualityQ1
dc.language.isoenen_US
dc.publisherWileyen_US
dc.relation.ispartofJournal of Mathematicsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.titleThe Best Fit Bayesian Hierarchical Generalized Linear Model Selection Using Information Complexity Criteria in the MCMC Approachen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files