Publication:
A Robust EM Clustering Approach: ROBEM

dc.authorscopusid36911404600
dc.authorscopusid58075450500
dc.contributor.authorÖner, Y.
dc.contributor.authorBulut, H.
dc.date.accessioned2020-06-21T12:18:39Z
dc.date.available2020-06-21T12:18:39Z
dc.date.issued2021
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Öner] Yüksel, Department of Statistics, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Bulut] Hasan, Department of Statistics, Ondokuz Mayis Üniversitesi, Samsun, Turkeyen_US
dc.description.abstractCluster analysis is defined as a group of multivariate statistical methods that are used to classify identical, or similar units. As is the case with all other classical statistical methods, classical clustering analysis gives misleading results when there is an outlier in the multivariate data set. To solve this problem many approaches have been proposed. This study focuses on developing a new approach, aiming to make the expectation maximization (EM) clustering algorithm resistant to outliers. We proposed a new robust hybrid clustering algorithm called robust EM (ROBEM) to reach our aim. This algorithm combines the EM clustering algorithm with robust principal component analysis (ROBPCA) algorithm. Spatial EM algorithm was proposed as a robust EM algorithm in the literature, but our simulation results and sample data applications showed that the ROBEM algorithm was more successful than the spatial EM algorithm in terms of outlier detection rate and faulty classification rate. Moreover, the proposed algorithm ROBEM provides similar results to the other well known robust clustering algorithms, such as TCLUST and Trimmed k-Means. © 2020 Taylor & Francis Group, LLC.en_US
dc.identifier.doi10.1080/03610926.2020.1722840
dc.identifier.endpage4605en_US
dc.identifier.issn0361-0926
dc.identifier.issue19en_US
dc.identifier.scopus2-s2.0-85078876246
dc.identifier.scopusqualityQ2
dc.identifier.startpage4587en_US
dc.identifier.urihttps://doi.org/10.1080/03610926.2020.1722840
dc.identifier.volume50en_US
dc.identifier.wosWOS:000512409700001
dc.identifier.wosqualityQ3
dc.language.isoenen_US
dc.publisherTaylor and Francis Ltd.en_US
dc.relation.ispartofCommunications in Statistics-Theory and Methodsen_US
dc.relation.journalCommunications in Statistics-Theory and Methodsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectClustering Analysisen_US
dc.subjectEMen_US
dc.subjectROBEMen_US
dc.subjectRobust Cluster Algorithmsen_US
dc.subjectSpatial EMen_US
dc.subjectTCLUSTen_US
dc.subjectTrimmed K-Meansen_US
dc.titleA Robust EM Clustering Approach: ROBEMen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files