Publication: Bazı Schiff Bazlı Moleküllerin Deneysel (XRD, FTIR, UV-Vis, NMR) ve Teorik (DFT, Hartree Fock, Kimyasal Aktivite, NBO, DNA Ect) Yöntemlerle İncelenmesi
Abstract
Bu tez çalışmasında, Schiff bazı sınıfına ait beş farklı yeni kristal sentezlenerek, bu kristallerin hem deneysel hem de teorik yöntemlerle çok yönlü yapısal ve elektronik özellikleri incelenmiştir. Tez kapsamında sırasıyla (E)-2-(((4-bromo-2-(triflorometil)fenil)imino)metil)-6-metoksifenol (C₁₅H₁₁BrF₃NO₂) (I), (E)-4-bromo-2-(((4-bromo-2(triflorometil)fenil)imino)metil)fenol (C₁₄H₈Br₂F₃NO) (II), (E)-4,5-dimetoksi-2-(((2-(triflorometil)fenil)imino)metil)fenol (C₁₆H₁₄F₃NO₃) (III), (E)-2-(((4-bromo-2-(triflorometil)fenil)imino)metil)-5-metoksifenol (C₁₅H₁₁BrF₃NO₂) (IV) ve (E)-4,5-dimetoksi-2-(((3-metoksi-5-(triflorometil)fenil)imino)metil)fenol (C₁₇H₁₆F₃NO₄) (V) kristalleri sentezlenmiş ve deneysel olarak kristal yapıları X-ışını kırınım (XRD) yöntemi ile çözülmüştür. Bu sayede moleküllerin üç boyutlu atomik düzenleri elde edilmiş, bağ uzunlukları, bağ açıları, planarlıkları ve intramoleküler etkileşimleri detaylı şekilde değerlendirilmiştir. FT-IR, UV-Vis ve ¹H/¹³C-NMR spektroskopileri yardımıyla her bir bileşiğin fonksiyonel grupları doğrulanarak, yapısal bütünlüklerinin teyidi sağlanmıştır. Deneysel sonuçlar, elde edilen bileşik yapılarla kıyaslanarak tutarlılığı değerlendirilmiş ve ilgili literatürle benzerlikler ya da sapmalar ortaya konmuştur. Tezde yer alan teorik incelemeler ise Yoğunluk Fonksiyonel Teorisi (YFK) ve Hartree-Fock (HF) gibi kuantum kimyası yöntemleriyle gerçekleştirilmiş olup, moleküllerin optimize geometrileri, toplam enerjileri, Mulliken yük dağılımları, titreşim frekansları, sınır moleküler orbitalleri (HOMO-LUMO), kimyasal yumuşaklık, sertlik, elektronegatiflik ve elektrofiliklik gibi kuantum kimyasal parametreleri hesaplanmıştır. Bileşiklerin moleküler elektrostatik potansiyel (MEP) yüzey analizleri yapılarak, elektrofilik ve nükleofilik bölgeleri görsel olarak ortaya konulmuştur. NBO (Natural Bond Orbital) analizleri yardımıyla, her bir bileşikteki bağ içi ve bağlar arası elektron transferleri değerlendirilmiş ve intramoleküler yük aktarımı mekanizmaları analiz edilmiştir. Özellikle HOMO-LUMO enerji boşluğu değerleri, bileşiklerin kimyasal kararlılığı ve reaktivitesi hakkında yorum yapılmasına olanak sağlamış, bu parametreler deneysel sonuçlarla birlikte ele alınarak tartışılmıştır. Tüm moleküllerin teorik olarak DNA baz çiftleriyle etkileşim potansiyelleri değerlendirilmiş; elektrostatik etkileşim, hidrojen bağ potansiyeli özellikleri üzerinden DNA/ECT (elektron transferi) etkinliği tartışılmıştır. Ek olarak tezde çalışılan tüm bileşiklerin biyolojik aktivite çalışmaları da yapılarak, çözücüde hazırlanan ekstraktlar ile Bacillus subtilis mikroorganizmasına karşı testleri elde edimiştir. Sonuç olarak, bu tez kapsamında sentezlenen Schiff bazı türevleri, gerek deneysel gerekse teorik parametreler açısından çok boyutlu olarak değerlendirilmiş ve bilimsel literatüre katkı sağlayacak nitelikte özgün veriler elde edilmiştir. Bu bulguların ışığında Schiff bazlarının fiziksel, kimyasal ve elektronik özellikleri arasındaki korelasyonlar ortaya konularak, gelecek çalışmalara temel oluşturabilecek nitelikte değerlendirmeler yapılmıştır.
In this thesis, five different new crystals belonging to the Schiff base class were synthesized and their versatile structural and electronic properties were investigated by both experimental and theoretical methods. Within the scope of the thesis, (E)-2-(((4-bromo-2-(trifluoromethyl)phenyl)imino)methyl)-6-methoxyphenol (C₁₅H₁₁BrF₃NO₂) (I), (E)-4-bromo-2-(((4-bromo-2(trifluoromethyl)phenyl)imino)methyl)phenol (C₁₄H₈Br₂F₃NO) (II), (E)-4,5-dimethoxy-2-(((2-(trifluoromethyl)phenyl)imino)methyl)phenol (C₁₆H₁₄F₃NO₃) (III), (E)-2-(((4-bromo-2-(trifluoromethyl)phenyl)imino)methyl)-5-methoxyphenol (C₁₅H₁₁BrF₃NO₂) (IV) and (E)-4,5-dimethoxy-2-(((3-methoxy-5-(trifluoromethyl)phenyl)imino)methyl)phenol (C₁₇H₁₆F₃NO₄) (V) crystals were synthesized, and their crystal structures were experimentally solved using X-ray diffraction (XRD). This allowed the three-dimensional atomic arrangements of the molecules to be obtained, and bond lengths, bond angles, planarity, and intramolecular interactions were evaluated in detail. The functional groups of each compound were verified using FT-IR, UV-Vis, and ¹H/¹³C-NMR spectroscopy, confirming their structural integrity. Experimental results were compared with the obtained compound structures to assess their consistency, and similarities or deviations from relevant literature were identified. The theoretical investigations in the thesis were conducted using quantum chemical methods such as Density Functional Theory (DFT) and Hartree-Fock (HF). Quantum chemical parameters such as optimized molecules' geometries, total energies, Mulliken charge distributions, vibrational frequencies, frontier molecular orbitals (HOMO-LUMO), chemical softness, hardness, electronegativity, and electrophilicity were calculated. Molecular electrostatic potential (MEP) surface analyses of the compounds were performed, visually demonstrating their electrophilic and nucleophilic regions. NBO (Natural Bond Orbital) analyses were used to evaluate intra- and inter-bond electron transfer in each compound, and intramolecular charge transfer mechanisms were analyzed. In particular, the HOMO-LUMO energy gap values allowed interpretations of the compounds' chemical stability and reactivity, and these parameters were discussed in conjunction with experimental results. The interaction potentials of all molecules with DNA base pairs were theoretically evaluated; DNA/ECT (electron transfer) activity was discussed through electrostatic interaction and hydrogen bond potential properties. In addition, biological activity studies were conducted for all compounds studied in this thesis, and tests were performed against the microorganism Bacillus subtilis using solvent-based extracts. In conclusion, the Schiff base derivatives synthesized in this thesis were evaluated multidimensionally in terms of both experimental and theoretical parameters, and original data were obtained that will contribute to the scientific literature. In light of these findings, correlations between the physical, chemical, and electronic properties of Schiff bases were revealed, and evaluations were made that could form the basis for future studies.
In this thesis, five different new crystals belonging to the Schiff base class were synthesized and their versatile structural and electronic properties were investigated by both experimental and theoretical methods. Within the scope of the thesis, (E)-2-(((4-bromo-2-(trifluoromethyl)phenyl)imino)methyl)-6-methoxyphenol (C₁₅H₁₁BrF₃NO₂) (I), (E)-4-bromo-2-(((4-bromo-2(trifluoromethyl)phenyl)imino)methyl)phenol (C₁₄H₈Br₂F₃NO) (II), (E)-4,5-dimethoxy-2-(((2-(trifluoromethyl)phenyl)imino)methyl)phenol (C₁₆H₁₄F₃NO₃) (III), (E)-2-(((4-bromo-2-(trifluoromethyl)phenyl)imino)methyl)-5-methoxyphenol (C₁₅H₁₁BrF₃NO₂) (IV) and (E)-4,5-dimethoxy-2-(((3-methoxy-5-(trifluoromethyl)phenyl)imino)methyl)phenol (C₁₇H₁₆F₃NO₄) (V) crystals were synthesized, and their crystal structures were experimentally solved using X-ray diffraction (XRD). This allowed the three-dimensional atomic arrangements of the molecules to be obtained, and bond lengths, bond angles, planarity, and intramolecular interactions were evaluated in detail. The functional groups of each compound were verified using FT-IR, UV-Vis, and ¹H/¹³C-NMR spectroscopy, confirming their structural integrity. Experimental results were compared with the obtained compound structures to assess their consistency, and similarities or deviations from relevant literature were identified. The theoretical investigations in the thesis were conducted using quantum chemical methods such as Density Functional Theory (DFT) and Hartree-Fock (HF). Quantum chemical parameters such as optimized molecules' geometries, total energies, Mulliken charge distributions, vibrational frequencies, frontier molecular orbitals (HOMO-LUMO), chemical softness, hardness, electronegativity, and electrophilicity were calculated. Molecular electrostatic potential (MEP) surface analyses of the compounds were performed, visually demonstrating their electrophilic and nucleophilic regions. NBO (Natural Bond Orbital) analyses were used to evaluate intra- and inter-bond electron transfer in each compound, and intramolecular charge transfer mechanisms were analyzed. In particular, the HOMO-LUMO energy gap values allowed interpretations of the compounds' chemical stability and reactivity, and these parameters were discussed in conjunction with experimental results. The interaction potentials of all molecules with DNA base pairs were theoretically evaluated; DNA/ECT (electron transfer) activity was discussed through electrostatic interaction and hydrogen bond potential properties. In addition, biological activity studies were conducted for all compounds studied in this thesis, and tests were performed against the microorganism Bacillus subtilis using solvent-based extracts. In conclusion, the Schiff base derivatives synthesized in this thesis were evaluated multidimensionally in terms of both experimental and theoretical parameters, and original data were obtained that will contribute to the scientific literature. In light of these findings, correlations between the physical, chemical, and electronic properties of Schiff bases were revealed, and evaluations were made that could form the basis for future studies.
Description
Citation
WoS Q
Scopus Q
Source
Volume
Issue
Start Page
End Page
190
