Publication:
An Effective Medical Image Classification: Transfer Learning Enhanced by Auto Encoder and Classified with SVM

dc.authorscopusid57205612660
dc.authorscopusid7801548559
dc.authorscopusid36349844700
dc.authorscopusid7004238231
dc.authorwosidAskerzade, Iman/Aav-9259-2020
dc.authorwosidGüzel, Mehmet/Aai-7466-2020
dc.contributor.authorSevinc, Omer
dc.contributor.authorMehrubeoglu, Mehrube
dc.contributor.authorGuzel, Mehmet Serdar
dc.contributor.authorAskerzade, Iman
dc.contributor.authorIDSevinc, Omer/0000-0003-0006-1682
dc.date.accessioned2025-12-11T01:09:09Z
dc.date.issued2022
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Sevinc, Omer] Ondokuz Mayis Univ, Comp Programming, TR-55900 Vezirkopru, Samsun, Turkey; [Mehrubeoglu, Mehrube] Texas A&M Univ CC, 6300 Ocean Dr, Corpus Christi, TX 78412 USA; [Guzel, Mehmet Serdar; Askerzade, Iman] Ankara Univ, Dept Comp Engn, TR-06830 Ankara, Turkeyen_US
dc.descriptionSevinc, Omer/0000-0003-0006-1682en_US
dc.description.abstractThe count of white blood cells is vital for disease diagnosis, which is exploited to identify many diseases like infections and leukemia. COVID-19 is another critical disease which should be detected and cured immediately. These diseases are better diagnosed using radiological and microscopic imaging. A clinical experience is required by a physician, to identify and classify the Chest X-rays or the microscopic blood cell images. In this study a novel approach is proposed for classifying medical images by using transfer learning method which is ResNet-50 where features are reduced with Auto Encoder (AE) and classified with a Support Vector Machine (SVM) instead of softmax classifier which is tested with different optimizers. The proposed method is compared with VGG-16 and ResNet-50, Inception-V3 which use softmax classifiers. Experimental results indicated that the proposed method possess 97.3% and 99% accuracy on WBC and COVID-19 datasets respectively which are higher than compared methods for each dataset.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.18280/ts.390112
dc.identifier.endpage131en_US
dc.identifier.issn0765-0019
dc.identifier.issn1958-5608
dc.identifier.issue1en_US
dc.identifier.scopus2-s2.0-85128213818
dc.identifier.startpage125en_US
dc.identifier.urihttps://doi.org/10.18280/ts.390112
dc.identifier.urihttps://hdl.handle.net/20.500.12712/41639
dc.identifier.volume39en_US
dc.identifier.wosWOS:000777957800012
dc.identifier.wosqualityQ4
dc.language.isoenen_US
dc.publisherInt Information & Engineering Technology Assocen_US
dc.relation.ispartofTraitement Du Signalen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectTransfer Learning Auto Encoderen_US
dc.subjectCOVID-19 Blood Cellsen_US
dc.subjectSVMen_US
dc.titleAn Effective Medical Image Classification: Transfer Learning Enhanced by Auto Encoder and Classified with SVMen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files