Publication:
APK2IMG4AndMal: Android Malware Detection Framework Based on Convolutional Neural Network

dc.authorscopusid57190738698
dc.authorscopusid56589621700
dc.authorscopusid15833929800
dc.authorscopusid22953804000
dc.authorscopusid57479270200
dc.contributor.authorKural, O.E.
dc.contributor.authorŞahin, D.Ö.
dc.contributor.authorAkleylek, S.
dc.contributor.authorKilic, E.
dc.contributor.authorÖmüral, M.
dc.date.accessioned2025-12-11T00:28:09Z
dc.date.issued2021
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Kural] Oǧuz Emre, Department of Computer Engineering, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Şahin] Durmuş Ozkan, Department of Computer Engineering, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Akleylek] Sedat, Department of Computer Engineering, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Kilic] Erdal, Department of Computer Engineering, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Ömüral] Murat, Rönesans Holding, Ankara, Turkeyen_US
dc.description.abstractIn this study, the Apk2Img4AndMal framework, which provides information about the application without the need for static or dynamic attributes, is recommended. The proposed framework reads APK files in binary format and converts them to grayscale images. In the classification phase of the framework, the convolutional neural network (CNN) is used, which gives successful results in image classification. In this way, the required features are obtained through a CNN. Therefore, there is also no feature extraction phase as other dynamic or static analysis-based frameworks. This property is the most important advantage of the Apk2Img4AndMal framework. The proposed framework is tested with 24588 Android malware and 3000 benign applications. The highest performance achieved in the study is up to 94%, according to the accuracy metric. © 2021 IEEEen_US
dc.identifier.doi10.1109/UBMK52708.2021.9558983
dc.identifier.endpage734en_US
dc.identifier.isbn9781665429085
dc.identifier.scopus2-s2.0-85125879089
dc.identifier.startpage731en_US
dc.identifier.urihttps://doi.org/10.1109/UBMK52708.2021.9558983
dc.identifier.urihttps://hdl.handle.net/20.500.12712/36483
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof-- 6th International Conference on Computer Science and Engineering, UBMK 2021 -- 2021-09-15 through 2021-09-17 -- Ankara -- 176826en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAndroid Malwareen_US
dc.subjectAndroid Malware Detectionen_US
dc.subjectAPK to Imageen_US
dc.subjectConvolutional Neural Networken_US
dc.subjectDeep Learningen_US
dc.subjectMalware Imageen_US
dc.titleAPK2IMG4AndMal: Android Malware Detection Framework Based on Convolutional Neural Networken_US
dc.typeConference Objecten_US
dspace.entity.typePublication

Files