Publication:
Apple Varieties Classification Using Deep Features and Machine Learning

dc.authorscopusid55174904300
dc.authorscopusid58490094400
dc.authorscopusid57188552484
dc.authorscopusid36083903200
dc.authorscopusid57191538933
dc.authorscopusid6602862866
dc.authorwosidTaner, Alper/Ahd-2451-2022
dc.authorwosidUngureanu, Nicoleta/Abb-1472-2020
dc.authorwosidDuran, Hüseyin/Gpf-4522-2022
dc.contributor.authorTaner, Alper
dc.contributor.authorMengstu, Mahtem Teweldemedhin
dc.contributor.authorSelvi, Kemal Çağatay
dc.contributor.authorDuran, Huseyin
dc.contributor.authorGur, Ibrahim
dc.contributor.authorUngureanu, Nicoleta
dc.contributor.authorIDTaner, Alper/0000-0001-8679-2069
dc.contributor.authorIDGür, İbrahim/0000-0003-0872-7135
dc.contributor.authorIDMengstu, Mahtem/0000-0001-5768-9150
dc.contributor.authorIDUngureanu, Nicoleta/0000-0002-4404-6719
dc.date.accessioned2025-12-11T01:33:50Z
dc.date.issued2024
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Taner, Alper; Selvi, Kemal Cagatay; Duran, Huseyin] Ondokuz Mayis Univ, Fac Agr, Dept Agr Machinery & Technol Engn, TR-55139 Samsun, Turkiye; [Mengstu, Mahtem Teweldemedhin] Hamelmalo Agr Coll, Dept Agr Engn, POB 397, Keren, Eritrea; [Gur, Ibrahim] Fruit Res Inst, TR-32500 Isparta, Turkiye; [Ungureanu, Nicoleta] Natl Univ Sci & Technol Politehn Bucharest, Fac Biotech Syst Engn, Dept Biotech Syst, Bucharest 060042, Romaniaen_US
dc.descriptionTaner, Alper/0000-0001-8679-2069; Gür, İbrahim/0000-0003-0872-7135; Mengstu, Mahtem/0000-0001-5768-9150; Ungureanu, Nicoleta/0000-0002-4404-6719;en_US
dc.description.abstractHaving the advantages of speed, suitability and high accuracy, computer vision has been effectively utilized as a non-destructive approach to automatically recognize and classify fruits and vegetables, to meet the increased demand for food quality-sensing devices. Primarily, this study focused on classifying apple varieties using machine learning techniques. Firstly, to discern how different convolutional neural network (CNN) architectures handle different apple varieties, transfer learning approaches, using popular seven CNN architectures (VGG16, VGG19, InceptionV3, MobileNet, Xception, ResNet150V2 and DenseNet201), were adopted, taking advantage of the pre-trained models, and it was found that DenseNet201 had the highest (97.48%) classification accuracy. Secondly, using the DenseNet201, deep features were extracted and traditional Machine Learning (ML) models: support vector machine (SVM), multi-layer perceptron (MLP), random forest classifier (RFC) and K-nearest neighbor (KNN) were trained. It was observed that the classification accuracies were significantly improved and the best classification performance of 98.28% was obtained using SVM algorithms. Finally, the effect of dimensionality reduction in classification performance, deep features, principal component analysis (PCA) and ML models was investigated. MLP achieved an accuracy of 99.77%, outperforming SVM (99.08%), RFC (99.54%) and KNN (91.63%). Based on the performance measurement values obtained, our study achieved success in classifying apple varieties. Further investigation is needed to broaden the scope and usability of this technique, for an increased number of varieties, by increasing the size of the training data and the number of apple varieties.en_US
dc.description.sponsorshipNational University of Science and Technology Politehnica Bucharesten_US
dc.description.sponsorshipNo Statement Availableen_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.3390/agriculture14020252
dc.identifier.issn2077-0472
dc.identifier.issue2en_US
dc.identifier.scopus2-s2.0-85187312297
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.3390/agriculture14020252
dc.identifier.urihttps://hdl.handle.net/20.500.12712/44632
dc.identifier.volume14en_US
dc.identifier.wosWOS:001169928500001
dc.identifier.wosqualityQ1
dc.language.isoenen_US
dc.publisherMDPIen_US
dc.relation.ispartofAgriculture-Baselen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectTransfer Learningen_US
dc.subjectDeep Featuresen_US
dc.subjectPrincipal Component Analysisen_US
dc.subjectMachine Learningen_US
dc.subjectAppleen_US
dc.titleApple Varieties Classification Using Deep Features and Machine Learningen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files