Publication:
Mannheim Offsets of Ruled Surfaces

dc.authorscopusid11838959400
dc.authorscopusid23670582400
dc.authorscopusid55880458100
dc.contributor.authorKasap, E.
dc.contributor.authorOrbay, K.
dc.contributor.authorAydemir, I.
dc.date.accessioned2020-06-21T15:08:35Z
dc.date.available2020-06-21T15:08:35Z
dc.date.issued2009
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Kasap] Emin, Department of Mathematics, Arts and Science Faculty, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Orbay] Keziban, Department of Mathematics, Amasya Üniversitesi, Amasya, Turkey; [Aydemir] Ismail, Department of Mathematics, Arts and Science Faculty, Ondokuz Mayis Üniversitesi, Samsun, Turkeyen_US
dc.description.abstractIn a recent works Liu and Wang (2008; 2007) study the Mannheim partner curves in the three dimensional space. In this paper, we extend the theory of the Mannheim curves to ruled surfaces and define two ruled surfaces which are offset in the sense of Mannheim. It is shown that, every developable ruled surface have a Mannheim offset if and only if an equation should be satisfied between the geodesic curvature and the arc-length of spherical indicatrix of it. Moreover, we obtain that the Mannheim offset of developable ruled surface is constant distance from it. Finally, examples are also given.en_US
dc.identifier.doi10.1155/2009/160917
dc.identifier.issn1563-5147
dc.identifier.scopus2-s2.0-65349094524
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.1155/2009/160917
dc.identifier.volume2009en_US
dc.identifier.wosWOS:000265071800001
dc.language.isoenen_US
dc.publisherHindawi Ltden_US
dc.relation.ispartofMathematical Problems in Engineeringen_US
dc.relation.journalMathematical Problems in Engineeringen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.titleMannheim Offsets of Ruled Surfacesen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files