Publication:
Counter Propagation Network-Based Extreme Learning Machine

dc.authorscopusid35781802800
dc.authorscopusid36084505100
dc.authorwosidKayhan, Gökhan/Hgu-2449-2022
dc.contributor.authorKayhan, Gokhan
dc.contributor.authorIseri, Ismail
dc.date.accessioned2025-12-11T00:38:41Z
dc.date.issued2023
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Kayhan, Gokhan; Iseri, Ismail] Ondokuz Mayis Univ, Dept Comp Engn, TR-55139 Atakum, Samsun, Turkeyen_US
dc.description.abstractThe extreme learning machine (ELM), a new learning algorithm for single hidden layer feedforward neural networks (SLFN), has drawn interest of a large number of researchers, especially due to its training speed and good generalization performances compared to known machine learning methods. The ELM model generates a solution to a linear optimization problem for the hidden layer output weights by randomly generating input weights and biases, instead of iteratively adjusting the network parameters (weights and biases) such as the backpropagation neural network model using the backpropagation algorithm and gradient descent learning. However, random determination of input weights and hidden layer bias can result in non-optimal parameters that have an adverse impact on the final results or require a higher number of hidden nodes for the neural network. In this study, a new hybrid method is proposed to overcome the drawbacks caused by non-optimal input weights and hidden biases. This hybrid method, which is called CPN-ELM algorithm, uses the counter propagation network (CPN) model to systematically optimize input weights, hidden layer neurons and hidden biases. The performance of CPN-ELM compared to traditional ELM method was examined on three benchmark regression datasets and we observed that the model produced higher accuracy values for each datasets.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1007/s11063-022-11021-2
dc.identifier.endpage872en_US
dc.identifier.issn1370-4621
dc.identifier.issn1573-773X
dc.identifier.issue1en_US
dc.identifier.scopus2-s2.0-85137945729
dc.identifier.scopusqualityQ3
dc.identifier.startpage857en_US
dc.identifier.urihttps://doi.org/10.1007/s11063-022-11021-2
dc.identifier.urihttps://hdl.handle.net/20.500.12712/38184
dc.identifier.volume55en_US
dc.identifier.wosWOS:000852939400001
dc.identifier.wosqualityQ3
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofNeural Processing Lettersen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectExtreme Learning Machineen_US
dc.subjectCounter Propagation Networken_US
dc.subjectSoft Computingen_US
dc.titleCounter Propagation Network-Based Extreme Learning Machineen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files