Publication:
Spatial Assessment of Landslide Susceptibility Mapping Generated by Fuzzy-AHP and Decision Tree Approaches

dc.authorscopusid56725767200
dc.authorscopusid36504950300
dc.authorscopusid16052385200
dc.authorscopusid35225280700
dc.authorwosidDengiz, Orhan/Abg-7284-2020
dc.authorwosidSisman, Aziz/Hhc-1818-2022
dc.authorwosidSisman, Yasemin/Aac-5787-2019
dc.contributor.authorSaygin, Fikret
dc.contributor.authorSisman, Yasemin
dc.contributor.authorDengiz, Orhan
dc.contributor.authorSisman, Aziz
dc.contributor.authorIDSaygın, Fikret/0000-0001-7771-806X
dc.contributor.authorIDDengiz, Orhan/0000-0002-0458-6016
dc.date.accessioned2025-12-11T01:15:47Z
dc.date.issued2023
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Saygin, Fikret] Sivas Univ Sci & Technol, Fac Agr Sci & Technol, Plant Prod & Technol Dept, Sivas, Turkiye; [Dengiz, Orhan] Ondokuz Mayis Univ, Agr Fac, Plant Nutr & Soil Sci Dept, Samsun, Turkiye; [Sisman, Yasemin; Sisman, Aziz] Ondokuz Mayis Univ, Engn Fac, Geomat Engn Dept, Samsun, Turkiyeen_US
dc.descriptionSaygın, Fikret/0000-0001-7771-806X; Dengiz, Orhan/0000-0002-0458-6016;en_US
dc.description.abstractThe current study aimed to elaborate a landslide susceptibility map (LSM) in the region that has high landslide risk and is located within the borders of the Atakum district of Samsun province, Turkey. For this aim, topographic, geological, land use, and soil indica-tors were considered in terms of landslide-conditioning and landslide-triggering parameters and they were weighted through the Fuzzy -Analytic Hierarchy Process (Fuzzy-AHP) approach. Then landslide susceptibility maps were generated at 4 different class levels (Very low-H1, Low-H2, Moderate-H3, High-H4) by using a weighted linear combination technique integrated with the Geographic Informa-tion System (GIS). In addition, it was investigated the predictability of susceptibility maps by using a decision tree algorithm named CHAID (Chi-Square Automatic Interaction Detection). According to the results, the 'very low' and 'low' susceptibility class, corre-sponding to 29.8 % of the total area in the susceptibility map, was estimated with 100 % accuracy through the decision tree algorithm. 70.2 % of the total area, specified in 'medium' (H3-68.6 %) and 'high' (H4-1.6 %) susceptibility classes in the map created Fuzzy-AHP, was found to be in the 'medium' susceptibility class, as a result of the estimation made with the decision tree. Although the H1, H2, and H3 classes were successfully estimated (p < 0.05) by using the weights obtained through the Fuzzy-AHP approach with the help of the decision tree algorithm, the estimation accuracy of the H4 class was 'low' (AUC [Area Under Curve]: 0.773; p > 0.05), at the end of the research.(c) 2023 COSPAR. Published by Elsevier B.V. All rights reserved.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1016/j.asr.2023.01.057
dc.identifier.endpage5235en_US
dc.identifier.issn0273-1177
dc.identifier.issn1879-1948
dc.identifier.issue12en_US
dc.identifier.scopus2-s2.0-85148362965
dc.identifier.scopusqualityQ2
dc.identifier.startpage5218en_US
dc.identifier.urihttps://doi.org/10.1016/j.asr.2023.01.057
dc.identifier.urihttps://hdl.handle.net/20.500.12712/42457
dc.identifier.volume71en_US
dc.identifier.wosWOS:001007553200001
dc.identifier.wosqualityQ1
dc.language.isoenen_US
dc.publisherElsevier Sci Ltden_US
dc.relation.ispartofAdvances in Space Researchen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectLandslide Susceptibilityen_US
dc.subjectFuzzy-AHPen_US
dc.subjectDecision Treeen_US
dc.titleSpatial Assessment of Landslide Susceptibility Mapping Generated by Fuzzy-AHP and Decision Tree Approachesen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files