Publication:
Stability and Bifurcation Analysis of a Fractional-Order Model of Cell-To Spread of HIV-1 with a Discrete Time Delay

dc.authorscopusid23024059000
dc.authorscopusid56785212800
dc.authorscopusid57217132593
dc.authorscopusid16303495600
dc.authorscopusid8842321100
dc.authorwosidAbbas, Syed/B-2359-2008
dc.authorwosidTyagi, Swati/Jce-5939-2023
dc.authorwosidKumar, Pushpendra/Aaa-1223-2021
dc.authorwosidSyed, Abbas/B-2359-2008
dc.authorwosidErturk, Vedat Suat/Abd-4512-2021
dc.authorwosidMomani, Shaher/P-7973-2014
dc.contributor.authorAbbas, Syed
dc.contributor.authorTyagi, Swati
dc.contributor.authorKumar, Pushpendra
dc.contributor.authorErturk, Vedat Suat
dc.contributor.authorMomani, Shaher
dc.contributor.authorIDAbbas, Syed/0000-0001-5694-2011
dc.contributor.authorIDKumar, Pushpena/0000-0002-7755-2837
dc.contributor.authorIDTyagi, Swati/0000-0003-2975-9988
dc.date.accessioned2025-12-11T01:30:41Z
dc.date.issued2022
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Abbas, Syed; Tyagi, Swati] Indian Inst Technol, Sch Basic Sci, Mandi, Himachal Prades, India; [Kumar, Pushpendra] Cent Univ Punjab, Sch Basic & Appl Sci, Dept Math & Stat, Bathinda 151001, Punjab, India; [Erturk, Vedat Suat] Ondokuz Mayis Univ, Fac Arts & Sci, Dept Math, Samsun, Turkey; [Momani, Shaher] Univ Jordan, Fac Sci, Dept Math, Amman, Jordanen_US
dc.descriptionAbbas, Syed/0000-0001-5694-2011; Kumar, Pushpena/0000-0002-7755-2837; Tyagi, Swati/0000-0003-2975-9988;en_US
dc.description.abstractIn this manuscript, fractional order is introduced onto a time-delay differential equation model of cell-to-cell spread of HIV-1. The fractional derivative of Caputo type is considered. We deal with the local stability of the resulting system and derive some necessary and sufficient conditions ensuring Hopf bifurcation to occur for this system. Explicit expressions for determining stability of critical surfaces are also given. An Adams-type predictor-corrector technique is applied to illustrate the numerical results. The main target of this study is to describe the structure of HIV-1 by using a fractional-order mathematical model, and the motivation of using fractional derivatives is the ability of these operators to capture memory effects in the system.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1002/mma.8226
dc.identifier.endpage7095en_US
dc.identifier.issn0170-4214
dc.identifier.issn1099-1476
dc.identifier.issue11en_US
dc.identifier.scopus2-s2.0-85126787112
dc.identifier.scopusqualityQ1
dc.identifier.startpage7081en_US
dc.identifier.urihttps://doi.org/10.1002/mma.8226
dc.identifier.urihttps://hdl.handle.net/20.500.12712/44175
dc.identifier.volume45en_US
dc.identifier.wosWOS:000771220600001
dc.identifier.wosqualityQ1
dc.language.isoenen_US
dc.publisherWileyen_US
dc.relation.ispartofMathematical Methods in the Applied Sciencesen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectFractional Derivativesen_US
dc.subjectHIV-1en_US
dc.subjectMathematical Modelen_US
dc.titleStability and Bifurcation Analysis of a Fractional-Order Model of Cell-To Spread of HIV-1 with a Discrete Time Delayen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files