Publication:
An Enhanced Classification System Based on Kernel Principal Component Analysis and Data Complexity Measures

dc.authorwosidSağlam, Fatih/Aaa-4146-2022
dc.authorwosidCengiz, Mehmet/Agz-9391-2022
dc.contributor.authorSaglam, Fatih
dc.contributor.authorDünder, Emre
dc.contributor.authorCengiz, Mehmet Ali
dc.date.accessioned2025-12-11T00:42:50Z
dc.date.issued2023
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Saglam, Fatih; Dunder, Emre; Cengiz, Mehmet Ali] Ondokuz Mayis Univ, Fac Sci, Dept Stat, TR-55420 Samsun, Turkiyeen_US
dc.description.abstractPrincipal component analysis is commonly used as a pre-step before employing a classifier to avoid the negative effect of the dimensionality and multicollinearity. The performance of a classifier is severely affected by the deviations from the linearity of the data structure and noisy samples. In this paper, we propose a new classification system that overcomes the drawback of these crucial problems, simultaneously. Our proposal is relying on the kernel principal component analysis with a proper parameter selection approach with data complexity measures. According to the empirical results, F1, T2 and T3 in AUC, T3 in GMEAN and T2 and T3 in MCC performed better than classical and other complexity measures. Comparison of classifiers showed that Radial SVM performs better in AUC, and KNN performs better in GMEAN and MCC using KPCA with complexity measures. As a result, our proposed system produces better results in various classification algorithms with respect to classical approach.en_US
dc.description.woscitationindexEmerging Sources Citation Index
dc.identifier.doi10.46939/J.Sci.Arts-23.2-a12
dc.identifier.endpage458en_US
dc.identifier.issn1844-9581
dc.identifier.issn2068-3049
dc.identifier.issue2en_US
dc.identifier.startpage447en_US
dc.identifier.urihttps://doi.org/10.46939/J.Sci.Arts-23.2-a12
dc.identifier.urihttps://hdl.handle.net/20.500.12712/38667
dc.identifier.wosWOS:001043228300012
dc.language.isoenen_US
dc.publisherEditura Bibliotheca-bibliotheca Publ Houseen_US
dc.relation.ispartofJournal of Science and Artsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectClassification Systemen_US
dc.subjectData Complexityen_US
dc.subjectKernel Principal Component Analysisen_US
dc.titleAn Enhanced Classification System Based on Kernel Principal Component Analysis and Data Complexity Measuresen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files