Publication:
Pattern Recognition Method for Identifying Smart Grid Power Quality Disturbance

dc.authorscopusid36460206000
dc.authorscopusid35102987300
dc.contributor.authorYalcin, T.
dc.contributor.authorÖzdemir, M.
dc.date.accessioned2020-06-21T13:39:32Z
dc.date.available2020-06-21T13:39:32Z
dc.date.issued2016
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Yalcin] Turgay, Electrical and Electronic Engineering Faculty, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Özdemir] Muammer, Electrical and Electronic Engineering Faculty, Ondokuz Mayis Üniversitesi, Samsun, Turkeyen_US
dc.descriptionCEMIG; CNPq; COPEL; Eletronorte; et al.; GEen_US
dc.description.abstractPattern recognition of power quality (PQ) disturbances in electrical power distribution system especially in smart grids has developed into crucial topic for system equipment and end-user. Methodically analyzing the PQ disturbances can develop and maintain smart grids effectiveness. This study presents signal processing method Hilbert Huang Transform and computational intelligence methods such as Support Vector Machines, C4.5 Decision tree for automatic detection and classification of voltage sag in power grid. In this study based on experimental studies, Hilbert Huang based pattern recognition technique was used to investigate power signal to diagnose voltage sag in power grid. SVM and Decision Tree (C4.5) were operated and their achievements were matched for calculation error and CPU time. According to these analysis, decision tree algorithm produces the best solution. © 2016 IEEE.en_US
dc.identifier.doi10.1109/ICHQP.2016.7783388
dc.identifier.endpage907en_US
dc.identifier.isbn9781509037926
dc.identifier.isbn9781538605172
dc.identifier.isbn9798350382563
dc.identifier.isbn9781665416399
dc.identifier.isbn9781728136974
dc.identifier.isbn9781467319430
dc.identifier.isbn0780376714
dc.identifier.isbn0780351053
dc.identifier.isbn0780364996
dc.identifier.isbn9781467364874
dc.identifier.issn1540-6008
dc.identifier.issn2164-0610
dc.identifier.scopus2-s2.0-85009487468
dc.identifier.startpage903en_US
dc.identifier.urihttps://doi.org/10.1109/ICHQP.2016.7783388
dc.identifier.wosWOS:000391424200155
dc.language.isoenen_US
dc.publisherIEEE Computer Society help@computer.orgen_US
dc.relation.ispartofProceedings of International Conference on Harmonics and Quality of Power, ICHQP -- 17th International Conference on Harmonics and Quality of Power, ICHQP 2016 -- 2016-10-16 through 2016-10-19 -- Belo Horizonte, Minas Gerais -- 125432en_US
dc.relation.ispartofseriesInternational Conference on Harmonics and Quality of Power
dc.relation.journalProceedings of 2016 17Th International Conference on Harmonics and Quality of Power (Ichqp)en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectC4.5 Decision Treesen_US
dc.subjectClassification Methodsen_US
dc.subjectFeature Extractionen_US
dc.subjectSupport Vector Machines (SVMs)en_US
dc.subjectVoltage Sagen_US
dc.titlePattern Recognition Method for Identifying Smart Grid Power Quality Disturbanceen_US
dc.typeConference Objecten_US
dspace.entity.typePublication

Files