Publication:
Design of the Amorphous/Crystalline TiO2 Nanocomposites via Machine Learning for Photocatalytic Applications

dc.authorscopusid56487254400
dc.authorscopusid56589621700
dc.authorscopusid43261041200
dc.authorwosidDemirci, Sercan/Acg-4553-2022
dc.authorwosidSahin, Durmus/Aaj-7961-2020
dc.contributor.authorDemirci, Selim
dc.contributor.authorSahin, Durmus Ozkan
dc.contributor.authorDemirci, Sercan
dc.date.accessioned2025-12-11T00:45:11Z
dc.date.issued2025
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Demirci, Selim] Marmara Univ, Fac Engn, Dept Met & Mat Engn, TR-34854 Istanbul, Turkiye; [Sahin, Durmus Ozkan; Demirci, Sercan] Ondokuz Mayis Univ, Fac Engn, Dept Comp Engn, TR-55139 Atakum, Samsun, Turkiyeen_US
dc.description.abstractThe ability to adjust the phase composition in titanium dioxide (TiO2) structures is crucial for customizing their properties to fit various applications. However, traditional approaches struggle to accurately forecast and regulate the balance between amorphous and crystalline phases within these materials. Here, we introduced an innovative method, utilizing machine learning (ML) techniques, to predict and classify the ratio of amorphous to crystalline phases in TiO2 nanocomposites based on thermogravimetric analysis (TGA) data. Non-isothermal TGA experiments were conducted at heating rates of 1 degrees C/min, 5 degrees C/min, 10 degrees C/min, and 20 degrees C/min to obtain dataset. Various ML algorithms including Adaboost, Decision Trees (DT) Regression, Gaussian Process Regression (GPR), k-Nearest Neighbor Regression (KNN), Linear Regression (LR), Multi-Layer Perceptron (MLP), Random Forest Regression (RF), Support Vector Machine Regression (SVM) and XGBoost (XGB) were employed. The performances of models were evaluated by the R-squared (R2), root mean square error (RMSE) and mean absolute error (MAE) metrics for training and test data. Among these, GPR, KNN, RF, and XGB emerged as the top-performing algorithms, with GPR achieving an exceptional R2 value of 0.999 and the lowest error rates (RMSE: 2 x 10-4, MAE: 2.4 x 10- 5). Thus, GPR was identified as the most successful regression model. As for classification part, the XGB algorithm achieved the highest accuracy of 99.9% with DT, RF, and XGB also excelling in True Positive Rate (TPR) and False Positive Rate (FPR) metrics. These findings highlight the potential of ML techniques in optimizing phase composition prediction and classification for TiO2 nanocomposites, thereby reducing timescales, cost, and rigorous calculations.en_US
dc.description.sponsorshipMarmara University and Ondokuz Mayimath;s Universityen_US
dc.description.sponsorshipThis work is supported by the Marmara University and Ondokuz May & imath;s University.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1016/j.mssp.2025.109460
dc.identifier.issn1369-8001
dc.identifier.issn1873-4081
dc.identifier.scopus2-s2.0-86000367956
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1016/j.mssp.2025.109460
dc.identifier.urihttps://hdl.handle.net/20.500.12712/38930
dc.identifier.volume192en_US
dc.identifier.wosWOS:001444531200001
dc.identifier.wosqualityQ2
dc.language.isoenen_US
dc.publisherElsevier Sci Ltden_US
dc.relation.ispartofMaterials Science in Semiconductor Processingen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectTitanium Dioxideen_US
dc.subjectAmorphous Phaseen_US
dc.subjectCrystalline Phaseen_US
dc.subjectMachine Learningen_US
dc.subjectGaussian Process Regressionen_US
dc.subjectXGBoosten_US
dc.titleDesign of the Amorphous/Crystalline TiO2 Nanocomposites via Machine Learning for Photocatalytic Applicationsen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files