Publication:
Longitudinal Machine Learning Modeling of MS Patient Trajectories Improves Predictions of Disability Progression

dc.authorwosidKuhle, Jens/Age-3474-2022
dc.authorwosidAguera-Morales, Eduardo/Q-7167-2018
dc.authorwosidAguera-Morales, Eduardo/Q-7167-2018
dc.authorwosidRamo-Tello, Cristina/N-9735-2016
dc.authorwosidSolaro, Claudio/Aal-2402-2021
dc.authorwosidOnofrj, Marco/K-7710-2016
dc.authorwosidSá, Maria/Aad-4527-2021
dc.contributor.authorDe Brouwer, Edward
dc.contributor.authorBecker, Thijs
dc.contributor.authorMoreau, Yves
dc.contributor.authorHavrdova, Eva Kubala
dc.contributor.authorTrojano, Maria
dc.contributor.authorEichau, Sara
dc.contributor.authorPeeters, Liesbet
dc.contributor.authorIDAguera-Morales, Eduardo/0000-0002-8604-2054
dc.contributor.authorIDAguera-Morales, Eduardo/0000-0002-8604-2054
dc.contributor.authorIDRamo-Tello, Cristina/0000-0001-8643-5053
dc.contributor.authorIDSánchez Menoyo, José Luis/0000-0003-2634-8294
dc.contributor.authorIDKappos, Ludwig/0000-0003-4175-5509
dc.contributor.authorIDSolaro, Claudio Marcello/0000-0002-6713-4623
dc.date.accessioned2025-12-11T01:39:13Z
dc.date.issued2021
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[De Brouwer, Edward; Moreau, Yves] Katholieke Univ Leuven, ESAT STADIUS, B-3001 Leuven, Belgium; [Becker, Thijs; Peeters, Liesbet] Hasselt Univ, Data Sci Inst, I Biostat, Diepenbeek, Belgium; [Peeters, Liesbet] Hasselt Univ, Biomed Res Inst, Dept Immunol, B-3590 Diepenbeek, Belgium; [Havrdova, Eva Kubala] Charles Univ Prague, Gen Univ Hosp, Prague, Czech Republic; [Trojano, Maria] Univ Bari, Dept Basic Med Sci Neurosci & Sense Organs, Bari, Italy; [Eichau, Sara] Hosp Univ Virgen Macarena, Seville, Spain; [Ozakbas, Serkan] Dokuz Eylul Univ, Konak Izmir, Turkey; [Onofrj, Marco] Univ G dAnnunzio, Chieti, Italy; [Grammond, Pierre] CISSS Chaudire Appalache, Levis, PQ, Canada; [Kuhle, Jens; Kappos, Ludwig] Univ Basel, Univ Hosp Basel, MS Ctr, Neurol Clin & Policlin, Basel, Switzerland; [Kuhle, Jens; Kappos, Ludwig] Univ Basel, Univ Hosp Basel, Res Ctr Clin Neuroimmunol & Neurosci Basel RC2NB, Basel, Switzerland; [Sola, Patrizia] Azienda Osped Univ, Modena, Italy; [Cartechini, Elisabetta] Azienda Sanitaria Unica Reg Marche AV3, Macerata, Italy; [Lechner-Scott, Jeannette] Univ Newcastle, Newcastle, NSW, Australia; [Alroughani, Raed] Amiri Hosp, Kuwait, Kuwait; [Gerlach, Oliver] Zuyderland Ziekenhuis, Sittard, Netherlands; [Kalincik, Tomas] Royal Melbourne Hosp, Melbourne MS Ctr, Dept Neurol, Melbourne, Vic, Australia; [Kalincik, Tomas] Univ Melbourne, Dept Med, CORe, Melbourne, Vic, Australia; [Granella, Franco] Univ Parma, Parma, Italy; [Grand'Maison, Francois] Neuro Rive Sud, Quebec City, PQ, Canada; [Bergamaschi, Roberto] IRCCS Mondino Fdn, Pavia, Italy; [Sa, Maria Jose] Ctr Hosp Univ So Joo, Dept Neurol, Porto, Portugal; [Sa, Maria Jose] Univ Fernando Pessoa, Porto, Portugal; [Van Wijmeersch, Bart] Hasselt Univ, Rehabil & MS Ctr Overpelt, Hasselt, Belgium; [Soysal, Aysun] Bakirkoy Educ & Res Hosp Psychiat & Neurol Dis, Istanbul, Turkey; [Luis Sanchez-Menoyo, Jose] Hosp Galdakao Usansolo, Galdakao, Spain; [Solaro, Claudio] Mons L Novarese Hosp, Dept Rehabil, Moncrivello, Italy; [Boz, Cavit] Farabi Hosp, KTU Med Fac, Trabzon, Turkey; [Iuliano, Gerardo] Osped Riuniti Salerno, Salerno, Italy; [Buzzard, Katherine] Box Hill Hosp, Melbourne, Vic, Australia; [Aguera-Morales, Eduardo] Univ Hosp Reina Sofia, Cordoba, Spain; [Terzi, Murat] 19 Mayis Univ, Samsun, Turkey; [Castillo Trivio, Tamara] Hosp Univ Donostia, San Sebastain, Spain; [Spitaleri, Daniele] Azienda Osped Rilievo Nazl San Giuseppe Moscati A, Avellino, Italy; [Van Pesch, Vincent] Clin Univ St Luc, Brussels, Belgium; [Shaygannejad, Vahid] Isfahan Univ Med Sci, Isfahan Neurosci Res Ctr, Esfahan, Iran; [Moore, Fraser] Jewish Gen Hosp, Montreal, PQ, Canada; [Oreja-Guevara, Celia] Hosp Clin San Carlos, Madrid, Spain; [Maimone, Davide] Garibaldi Hosp, Catania, Italy; [Gouider, Riadh] Razi Hosp, Manouba, Tunisia; [Csepany, Tunde] Univ Debrecen, Debrecen, Hungary; [Ramo-Tello, Cristina] Hosp Badalona Germans Trias & Pujol, Badalona, Spainen_US
dc.descriptionAguera-Morales, Eduardo/0000-0002-8604-2054; Aguera-Morales, Eduardo/0000-0002-8604-2054; Ramo-Tello, Cristina/0000-0001-8643-5053; Sánchez Menoyo, José Luis/0000-0003-2634-8294; Kappos, Ludwig/0000-0003-4175-5509; Solaro, Claudio Marcello/0000-0002-6713-4623; Moreau, Yves/0000-0002-4647-6560; Kubala Havrdova, Eva/0000-0002-9543-4359; Van Wijmeersch, Bart/0000-0003-0528-1545; Grammond, Pierre/0000-0001-6341-724X; Kuhle, Jens/0000-0002-6963-8892; Soysal, Aysun/0000-0002-1598-5944; Castillo-Trivino, Tamara/0000-0002-9249-3185; Lechner-Scott, Jeannette/0000-0002-3850-447X; Gouider, Riadh/0000-0001-9615-3797; Becker, Thijs/0000-0003-3432-783X; Van Pesch, Vincent/0000-0003-2885-9004;en_US
dc.description.abstractBackground and Objectives: Research in Multiple Sclerosis (MS) has recently focused on extracting knowledge from real-world clinical data sources. This type of data is more abundant than data produced during clinical trials and potentially more informative about real-world clinical practice. However, this comes at the cost of less curated and controlled data sets. In this work we aim to predict disability progression by optimally extracting information from longitudinal patient data in the real-world setting, with a special focus on the sporadic sampling problem. Methods: We use machine learning methods suited for patient trajectories modeling, such as recurrent neural networks and tensor factorization. A subset of 6682 patients from the MSBase registry is used. Results: We can predict disability progression of patients in a two-year horizon with an ROC-AUC of 0.85, which represents a 32% decrease in the ranking pair error (1-AUC) compared to reference methods using static clinical features. Conclusions: Compared to the models available in the literature, this work uses the most complete patient history for MS disease progression prediction and represents a step forward towards AI-assisted precision medicine in MS. (c) 2021 Published by Elsevier B.V.en_US
dc.description.sponsorshipResearch Council KU Leuven [C14/18/092]; CELSA-HIDUCTION Flemish Government:IWT [CELSA/17/032]; FWO [06260]; Flemish Government under the Onderzoeksprogramma Artificile Intelligen-tie (AI) Vlaanderen program; Innovative Medicines Initiative 2 Joint Un-dertaking [831472]; European Union; FWO-SB grant; EFPIAen_US
dc.description.sponsorshipWe would like to thank all patients and their caregivers who have participated in this study and who have contributed data to the MSBase cohort. The list of MSBase study group contributors are provided in Appendix A . Yves Moreau is funded by Research Council KU Leuven: C14/18/092 SymBioSys3; CELSA-HIDUCTION CELSA/17/032 Flemish Government:IWT: Exaptation, Ph.D. grants FWO 06260 (Iterative and multi-level methods for Bayesian multirelational factorization with features) . This research received funding from the Flemish Government under the Onderzoeksprogramma Artificile Intelligen-tie (AI) Vlaanderen program. EU: MELLODDY This project has re-ceived funding from the Innovative Medicines Initiative 2 Joint Un-dertaking under grant agreement No 831472. This Joint Undertak-ing receives support from the European Union's Horizon 2020 re-search and innovation program and EFPIA. Edward De Brouwer is funded by a FWO-SB grant. We received ethical approval for this study from the med-ical ethics committee of the University of Hasselt, number CME2019/059.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1016/j.cmpb.2021.106180
dc.identifier.issn0169-2607
dc.identifier.issn1872-7565
dc.identifier.pmid34146771
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1016/j.cmpb.2021.106180
dc.identifier.urihttps://hdl.handle.net/20.500.12712/45168
dc.identifier.volume208en_US
dc.identifier.wosWOS:000685503300008
dc.identifier.wosqualityQ1
dc.language.isoenen_US
dc.publisherElsevier Ireland Ltden_US
dc.relation.ispartofComputer Methods and Programs in Biomedicineen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectMultiple Sclerosisen_US
dc.subjectMachine Learningen_US
dc.subjectLongitudinal Dataen_US
dc.subjectRecurrent Neural Networksen_US
dc.subjectElectronic Health Recordsen_US
dc.subjectDisability Progressionen_US
dc.subjectReal-World Dataen_US
dc.titleLongitudinal Machine Learning Modeling of MS Patient Trajectories Improves Predictions of Disability Progressionen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files