Publication:
Comparison of Neural Network Techniques and Multi-Linear Regression to Predict Properties and Classify Pepper Seeds

dc.authorscopusid56092042400
dc.authorscopusid57960348300
dc.contributor.authorYildirim, Demet
dc.contributor.authorCevher, Elcin Yesiloglu
dc.contributor.authorIDYeşi̇loğlu Cevher, Elçi̇n/0000-0001-9062-923X
dc.date.accessioned2025-12-11T01:11:23Z
dc.date.issued2025
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Yildirim, Demet] Black Sea Agr Res Inst, Soil & Water Resources Dept, Agr Irrigat & Land Reclamat, Samsun, Turkiye; [Cevher, Elcin Yesiloglu] Univ Ondokuz Mayis, Fac Agr, Dept Agr Machinery & Technol Engn, Samsun, Turkiyeen_US
dc.descriptionYeşi̇loğlu Cevher, Elçi̇n/0000-0001-9062-923Xen_US
dc.description.abstractPepper seed quality is determined using the mechanical and physical properties through artificial neural networks (ANNs) to enable accurate and timely agricultural planning. The objective of this study is to develop a model that provides simple, precise, rapid, and cost-effective predictions based on thousand-grain weight, porosity, and various classifications for pepper seeds. To achieve this, three different models-artificial neural networks (ANN), radial basis function (RBF), and multiple linear regression analysis (MLR) were employed to estimate thousand-grain weight and porosity. The best-selected model was then used to classify 12 different pepper seed varieties. This applied model's performance was evaluated using the determination coefficient (R2), the root mean square error (RMSE), the mean relative percentage absolute error (MRPE), and the mean square error (MSE). A comparison of the ANN model results indicated that the input parameters-width, length, thickness, and bulk density-provided the optimal prediction model concerning R2, RMSE, MRPE, and MSE. For the testing dataset, the ANN model achieved values ranging from 0.88 to 0.92 for R2, 0.276 to 0.016 for RMSE, 1.647 to 0.232 for MRPE, and 0.138-0.008 for MSE using 5-8-1 and 8-10-1 network structures, respectively. These selected models can be used as a neurocomputing-based approach to predict the mechanical and physical properties of pepper seeds, assisting in variety classification and genotype prediction.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1111/jfpe.14677
dc.identifier.issn0145-8876
dc.identifier.issn1745-4530
dc.identifier.issue3en_US
dc.identifier.scopus2-s2.0-86000115445
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.1111/jfpe.14677
dc.identifier.urihttps://hdl.handle.net/20.500.12712/41979
dc.identifier.volume48en_US
dc.identifier.wosWOS:001436957500001
dc.identifier.wosqualityQ2
dc.language.isoenen_US
dc.publisherWileyen_US
dc.relation.ispartofJournal of Food Process Engineeringen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectBest Modelen_US
dc.subjectMulti-Linear Regressionen_US
dc.subjectPepper Seeds Various and Genotypesen_US
dc.subjectSoft Computing Techniqueen_US
dc.titleComparison of Neural Network Techniques and Multi-Linear Regression to Predict Properties and Classify Pepper Seedsen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files