Publication:
A Two-Pass Hybrid Training Algorithm for RBF Networks

dc.authorwosidÖzdemir, Ali/A-4740-2017
dc.contributor.authorOzdemir, Ali Ekber
dc.contributor.authorEminoglu, Ilyas
dc.date.accessioned2025-12-11T00:40:19Z
dc.date.issued2013
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Ozdemir, Ali Ekber] Ordu Univ, Unye Meslek Yuksek Okulu, Ordu, Turkey; [Eminoglu, Ilyas] Ondokuz Mayis Univ, Dept Elect & Elect Engn, TR-55139 Kurupelit, Turkeyen_US
dc.description.abstractThis paper presents a systematic construction of linearly weighted Gaussian radial basis function (RBF) neural network. The proposed method is computationally a two-stage hybrid training algorithm. The first stage of the hybrid algorithm is a pre-processing unit which generates a coarsely-tuned RBF network. The second stage is a fine-tuning phase. The coarsely-tuned RBF network is then optimized by using a two-pass training algorithm. In forward-pass, the output weights of RBF are calculated by the Levenberg - Marquardt (LM) algorithm while the rest of the parameters is remained fixed. Similarly, in backward-pass, the free parameters of basis function (center and width of each node) are adjusted by gradient descent (GD) algorithm while the output weights of RBF are remained fixed. Hence, the effectiveness of the proposed method for an RBF network is demonstrated with simulations.en_US
dc.description.woscitationindexConference Proceedings Citation Index - Science
dc.identifier.endpage620en_US
dc.identifier.isbn9786050105049
dc.identifier.scopusqualityN/A
dc.identifier.startpage617en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12712/38324
dc.identifier.wosWOS:000333752200132
dc.identifier.wosqualityN/A
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartof8th International Conference on Electrical and Electronics Engineering (ELECO) -- Nov 28-30, 2013 -- Bursa, Turkeyen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.titleA Two-Pass Hybrid Training Algorithm for RBF Networksen_US
dc.typeConference Objecten_US
dspace.entity.typePublication

Files