Publication: Grafen ve Magnezyum Oksit Takviyeli Hidroksiapatit Köpük Kompozitlerin Üretimi ve Karakterizasyonu
Abstract
Bu çalışmada, sünger şablon yöntemi kullanılarak üretilen hidroksiapatit köpük malzeme, hidroksiapatit-grafen, hidroksiapatit-magnezyum oksit köpük kompozit malzemeler ile hidroksiapatit-magnezyum oksit-grafen köpük hibrit kompozit malzemeler toz metalurjisi yöntemiyle üretilmiştir. Farklı takviye partiküllerinin köpük kompozitlerin yoğunluğuna, basma dayanımına, mikroyapısna ve biyolojik özelliklerine etkileri incelenmiştir. Takviyesiz hidroksiapatit köpük malzeme için en iyi sinterleme sıcaklığı 1300oC olarak belirlenmiştir ve 1300oC'de en yüksek yoğunluk (0.497 g/cm3) ve en yüksek basma dayanımı (0.054 MPa) değeri elde edilmiştir. Hidroksiapatit-grafen köpük kompozit malzemeler için en yüksek basma dayanımı (0.152 MPa) ve en yüksek yoğunluk (0.768 g/cm3) ağırlıkça %0.3 grafen içeren köpük kompozitte elde edilmiştir. Hidroksiapatit-magnezyum oksit köpük kompozit malzemelerde en yüksek basma dayanımı (0.102 MPa) ve en yüksek yoğunluk (0.704 g/cm3) ağırlıkça %5 magnezyum oksit içeren köpük kompozitte elde edilmiştir. Hidroksiapatit-magnezyum oksit-grafen köpük hibrit kompozitte en yüksek basma dayanımı (0.30 MPa) ve en yüksek yoğunluk (0.914 g/cm3) ağırlıkça %5 magnezyum oksit ve ağırlıkça %0.3 grafen içeren köpük hibrit kompozitte elde edilmiştir. Yapılan SEM ve EDS analizi sonucu yapıda grafen ve magnezyum oksitin bulunduğu doğrulanmıştır. Laktatlı Ringer sıvı testinde en yüksek pH değeri hidroksiapatit köpük malzemede 11.94 değeri elde edilmiştir. Ayrıca yapılan antibakteryel test çalışmasında ise genel olarak elde edilen numuneler üzerinde bakteri üremesi görülmemiştir.
In this study, hydroxyapatite foam material produced using the sponge template method was used to manufacture hydroxyapatite-graphene, hydroxyapatite-magnesium oxide foam composite materials, and hydroxyapatite-magnesium oxide-graphene foam hybrid composite materials via powder metallurgy method. The effects of different reinforcement particles on the density, compressive strength, microstructure, and biological properties of foam composites were investigated. For the unreinforced hydroxyapatite foam material, the optimal sintering temperature was determined to be 1300°C, resulting in the highest density (0.497 g/cm3) and the highest compressive strength (0.054 MPa) achieved at this temperature. The highest compressive strength (0.152 MPa) and the highest density (0.768 g/cm3) for hydroxyapatite-graphene foam composite materials were achieved in the foam composite containing 0.3% graphene by weight. In hydroxyapatite-magnesium oxide foam composite materials, the highest compressive strength (0.102 MPa) and the highest density (0.704 g/cm3) were obtained in the foam composite containing 5% magnesium oxide by weight. For the hydroxyapatite-magnesium oxide-graphene foam hybrid composite, the highest compressive strength (0.30 MPa) and the highest density (0.914 g/cm3) were achieved in the hybrid foam composite containing 5% magnesium oxide by weight and 0.3% graphene by weight. The SEM and EDS analysis confirmed the presence of graphene and magnesium oxide in the structure. In the lactate Ringer solution test, the highest pH value of 11.94 was obtained in the hydroxyapatite foam material. Additionally, in the antibacterial test study, bacterial growth was not observed on the samples obtained in general.
In this study, hydroxyapatite foam material produced using the sponge template method was used to manufacture hydroxyapatite-graphene, hydroxyapatite-magnesium oxide foam composite materials, and hydroxyapatite-magnesium oxide-graphene foam hybrid composite materials via powder metallurgy method. The effects of different reinforcement particles on the density, compressive strength, microstructure, and biological properties of foam composites were investigated. For the unreinforced hydroxyapatite foam material, the optimal sintering temperature was determined to be 1300°C, resulting in the highest density (0.497 g/cm3) and the highest compressive strength (0.054 MPa) achieved at this temperature. The highest compressive strength (0.152 MPa) and the highest density (0.768 g/cm3) for hydroxyapatite-graphene foam composite materials were achieved in the foam composite containing 0.3% graphene by weight. In hydroxyapatite-magnesium oxide foam composite materials, the highest compressive strength (0.102 MPa) and the highest density (0.704 g/cm3) were obtained in the foam composite containing 5% magnesium oxide by weight. For the hydroxyapatite-magnesium oxide-graphene foam hybrid composite, the highest compressive strength (0.30 MPa) and the highest density (0.914 g/cm3) were achieved in the hybrid foam composite containing 5% magnesium oxide by weight and 0.3% graphene by weight. The SEM and EDS analysis confirmed the presence of graphene and magnesium oxide in the structure. In the lactate Ringer solution test, the highest pH value of 11.94 was obtained in the hydroxyapatite foam material. Additionally, in the antibacterial test study, bacterial growth was not observed on the samples obtained in general.
Description
Citation
WoS Q
Scopus Q
Source
Volume
Issue
Start Page
End Page
114
