Publication:
The Use of Artificial Neural Networks to Estimate Optimum Insulation Thickness, Energy Savings, and Carbon Dioxide Emissions

dc.authorscopusid56541733100
dc.authorscopusid55976027400
dc.authorwosidCemek, Bilal/Aaz-7757-2020
dc.authorwosidKüçüktopcu, Erdem/Aba-5376-2021
dc.authorwosidKüçüktopçu, Erdem/Aba-5376-2021
dc.contributor.authorKucuktopcu, Erdem
dc.contributor.authorCemek, Bilal
dc.contributor.authorIDKüçüktopcu, Erdem/0000-0002-8708-2306
dc.date.accessioned2025-12-11T01:05:16Z
dc.date.issued2021
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Kucuktopcu, Erdem; Cemek, Bilal] Univ Ondokuz Mayis, Fac Agr, TR-55139 Samsun, Turkeyen_US
dc.descriptionKüçüktopcu, Erdem/0000-0002-8708-2306;en_US
dc.description.abstractThis study examined artificial neural networks' (ANNs) applicability in modeling optimum insulation thickness (OIT), annual total net savings (ATS), and reduction of carbon dioxide emissions (RCO2) that result from insulating buildings. Data from insulation markets, economic parameters, fuel prices, and heating degree days (HDDs) were introduced into the model as input variables. To complete the most thorough analysis, three learning algorithms, Levenberg Marquardt (LM), Bayesian Regularization (BR), and Scaled Conjugate Gradient (SCG) were employed. Five statistical indexes were utilized to evaluate models' performances: determination coefficient (R-2), root mean square error (RMSE), standard error of prediction (SEP), RMSE observations' standard deviation ratio (RSR), and average absolute percent relative error (AAPRE). Moreover, visualization techniques were used to assess the similarity between the OIT, ATS, and RCO(2)values calculated and predicted. The results obtained clearly show that the LM model outperformed the BR and SCG models in all estimations. Thereafter, the developed ANNs model was validated for different cities. Overall, this model will provide an effective and straightforward guide for people working in the field to improve thermal insulation design, analysis, and implementation worldwide.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1002/ep.13478
dc.identifier.issn1944-7442
dc.identifier.issn1944-7450
dc.identifier.issue1en_US
dc.identifier.scopus2-s2.0-85087668718
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.1002/ep.13478
dc.identifier.urihttps://hdl.handle.net/20.500.12712/41245
dc.identifier.volume40en_US
dc.identifier.wosWOS:000546723000001
dc.identifier.wosqualityQ3
dc.language.isoenen_US
dc.publisherWileyen_US
dc.relation.ispartofEnvironmental Progress & Sustainable Energyen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectArtificial Neural Networksen_US
dc.subjectEnergyen_US
dc.subjectInsulationen_US
dc.subjectModelen_US
dc.subjectPoultryen_US
dc.titleThe Use of Artificial Neural Networks to Estimate Optimum Insulation Thickness, Energy Savings, and Carbon Dioxide Emissionsen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files