Publication:
Sustainable Arsenic Removal Using Iron-Oxide Natural Minerals: Integrating Adsorption, Machine Learning, and Process Optimization

dc.authorscopusid59703816100
dc.authorscopusid56976171900
dc.authorscopusid9239686500
dc.authorscopusid6602655294
dc.authorscopusid16039865600
dc.authorwosidAltaş, Levent/E-5787-2019
dc.authorwosidAlver, Alper/F-2304-2019
dc.authorwosidAkbal, Feryal/Abi-1208-2022
dc.contributor.authorOztel, Merve Donmez
dc.contributor.authorAlver, Alper
dc.contributor.authorAkbal, Feryal
dc.contributor.authorAltas, Levent
dc.contributor.authorKuleyin, Ayse
dc.date.accessioned2025-12-11T00:46:08Z
dc.date.issued2025
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Oztel, Merve Donmez; Akbal, Feryal; Kuleyin, Ayse] Ondokuz Mayis Univ, Engn Fac, Dept Environm Engn, TR-55200 Samsun, Turkiye; [Alver, Alper] Aksaray Univ, Tech Sci Vocat Sch, Dept Environm Protect & Technol, Aksaray, Turkiye; [Altas, Levent] Aksaray Univ, Engn Fac, Dept Environm Engn, Aksaray, Turkiyeen_US
dc.description.abstractWe investigated the sustainable removal of arsenite (As(III)) and arsenate (As(V)) from water using iron oxide-coated pumice (IOCP), sepiolite (IOCS), and zeolite (IOCZ) integrated with machine learning (ML) and optimization techniques. Adsorption kinetics followed a pseudo-second-order model, while equilibrium data were best represented by Langmuir and Sips isotherms, indicating chemisorption on heterogeneous surfaces. To predict and optimize performance, Artificial Neural Networks (ANN), Extreme Gradient Boosting (XGBoost), and Random Forest (RF) were applied, with cross-validated results demonstrating the superior accuracy of ANN (R-2 up to 0.96, RMSE 20-40 mu g l(-1)). Coupling ANN with Genetic Algorithm and Bayesian Optimization identified global optima for pH, contact time, and initial concentration, yielding residual concentrations of similar to 8.1 mu g l(-1) (IOCP-As(III)), similar to 42 mu g l(-1) (IOCS-As(III)), and similar to 1.7 mu g l(-1) (IOCZ-As(III)), and similar to 1.3 mu g l(-1) (IOCP-As(V)), similar to 28 mu g l(-1) (IOCS-As(V)), and similar to 6.2 mu g l(-1) (IOCZ-As(V)). Compared with trial-and-error conditions (residuals of similar to 112 mu g l(-1) for IOCS-As(III) and similar to 27 mu g l(-1) for IOCP-As(V)), the optimized systems reduced chemical usage by up to 65 %, lowered treatment costs to similar to 0.004-0.007 $ mg(-1) As, and delivered positive environmental gains exceeding 80 % for IOCP-As(V) and IOCZ-As(III). These results demonstrate that natural mineral-based sorbents, when coupled with AI-driven optimization, can achieve near-complete removal of both As(III) and As(V) at low cost and with reduced environmental footprint, offering a technically robust and scalable framework for sustainable water treatment.en_US
dc.description.sponsorshipScientific Research Project Coordination Unit of Ondokuz Mayimath;s University, Samsun, Turkiye [PYO.MUH.1904.014]en_US
dc.description.sponsorshipThis study was supported by the Scientific Research Project Coordination Unit of Ondokuz May & imath;s University, Samsun, Turkiye, under grant number PYO.MUH.1904.014.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1016/j.surfin.2025.107730
dc.identifier.issn2468-0230
dc.identifier.scopus2-s2.0-105017089416
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1016/j.surfin.2025.107730
dc.identifier.urihttps://hdl.handle.net/20.500.12712/39058
dc.identifier.volume74en_US
dc.identifier.wosWOS:001587965200001
dc.identifier.wosqualityQ1
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofSurfaces and Interfacesen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectArsenic Removalen_US
dc.subjectIron Oxide Coatingen_US
dc.subjectNatural Adsorbentsen_US
dc.subjectMachine Learningen_US
dc.subjectOptimizationen_US
dc.subjectXGBoosten_US
dc.subjectSustainabilityen_US
dc.titleSustainable Arsenic Removal Using Iron-Oxide Natural Minerals: Integrating Adsorption, Machine Learning, and Process Optimizationen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files