Publication:
Accelerating Number Theoretic Transform in GPU Platform for qTESLA Scheme

dc.authorscopusid56528569300
dc.authorscopusid15833929800
dc.authorscopusid14827620500
dc.authorscopusid6508137561
dc.authorwosidLee, Wai/L-2715-2018
dc.authorwosidAkleylek, Sedat/D-2090-2015
dc.authorwosidYap, Wun-She/Abb-5158-2021
dc.contributor.authorLee, Wai-Kong
dc.contributor.authorAkleylek, Sedat
dc.contributor.authorYap, Wun-She
dc.contributor.authorGoi, Bok-Min
dc.contributor.authorIDLee, Wai Kong/0000-0003-4659-8979
dc.contributor.authorIDAkleylek, Sedat/0000-0001-7005-6489
dc.contributor.authorIDGoi, Bok Min/0000-0002-9854-7121
dc.date.accessioned2020-06-21T09:05:48Z
dc.date.available2020-06-21T09:05:48Z
dc.date.issued2019
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Lee, Wai-Kong] Univ Tunku Abdul Rahman, Jalan Univ, Bandar Baru Barat 31900, Kampar, Malaysia; [Akleylek, Sedat] Ondokuz Mayis Univ, Dept Comp Engn, Samsun, Turkey; [Yap, Wun-She; Goi, Bok-Min] Univ Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long 43000, Kajang, Malaysiaen_US
dc.descriptionLee, Wai Kong/0000-0003-4659-8979; Akleylek, Sedat/0000-0001-7005-6489; Goi, Bok Min/0000-0002-9854-7121en_US
dc.description.abstractPost-quantum cryptography had attracted a lot of attentions in recent years, due to the potential threat emerged from quantum computer against traditional public key cryptography. Among all post-quantum candidates, lattice-based cryptography is considered the most promising and well studied one. The most time consuming operation in lattice-based cryptography schemes is polynomial multiplication. Through careful selection of the lattice parameters, the polynomial multiplication can be accelerated by Number Theoretic Transform (NTT) and massively parallel architecture like Graphics Processing Units (GPU). However, existing NTT implementation in GPU only focuses on parallelizing one of the three for loop, which eventually causes slow performance and warp divergence. In this paper, we proposed a strategy to mitigate this problem and avoid the warp divergence. To verify the effectiveness of the proposed strategy, the NTT was implemented following the lattice parameters in qTESLA, which is one of the round 2 candidates in NIST Post-Quantum Standardization competition. To the best of our knowledge, this is the first implementation of NTT in GPU with parameters from qTESLA. The proposed implementation can be used to accelerate qTESLA signature generation and verification in batch, which is very useful under server environment. On top of that, the proposed GPU implementation can also be generalized to other lattice-based schemes.en_US
dc.description.sponsorshipFundamental Research Grant Scheme (FRGS), Malaysia [FRGS/1/2018/STG06/UTAR/03/1]; TUBITAK [EEEAG-117E636]en_US
dc.description.sponsorshipThis work is supported by Fundamental Research Grant Scheme (FRGS), Malaysia with project number FRGS/1/2018/STG06/UTAR/03/1. Sedat Akleylek is partially supported by TUBITAK under grant no: EEEAG-117E636.en_US
dc.description.woscitationindexConference Proceedings Citation Index - Science
dc.identifier.doi10.1007/978-3-030-34339-2_3
dc.identifier.endpage55en_US
dc.identifier.isbn9783030343392
dc.identifier.isbn9783030343385
dc.identifier.issn0302-9743
dc.identifier.issn1611-3349
dc.identifier.scopus2-s2.0-85076701173
dc.identifier.scopusqualityQ3
dc.identifier.startpage41en_US
dc.identifier.urihttps://doi.org/10.1007/978-3-030-34339-2_3
dc.identifier.volume11879en_US
dc.identifier.wosWOS:000611750900003
dc.language.isoenen_US
dc.publisherSpringer International Publishing Agen_US
dc.relation.ispartofLecture Notes in Computer Science (including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)en_US
dc.relation.ispartofseriesLecture Notes in Computer Science
dc.relation.journalLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectNumber Theoretic Transformen_US
dc.subjectLattice-Based Cryptographyen_US
dc.subjectGraphics Processing Unitsen_US
dc.subjectPost-Quantum Cryptographyen_US
dc.titleAccelerating Number Theoretic Transform in GPU Platform for qTESLA Schemeen_US
dc.typeConference Objecten_US
dspace.entity.typePublication

Files