Publication:
Large-Amplitude Vibration of Functionally Graded Orthotropic Double-Curved Shallow Spherical and Hyperbolic Paraboloidal Shells

dc.authorscopusid6603803044
dc.authorscopusid57188840300
dc.authorscopusid6508376791
dc.authorwosidSofiyev, Abdullah/Aeh-3349-2022
dc.authorwosidZerin, Zihni/Oxa-9280-2025
dc.authorwosidTuran, Ferruh/D-3589-2016
dc.contributor.authorSofiyev, A. H.
dc.contributor.authorTuran, F.
dc.contributor.authorZerin, Z.
dc.contributor.authorIDTuran, Ferruh/0000-0002-4160-712X
dc.date.accessioned2025-12-11T01:10:33Z
dc.date.issued2020
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Sofiyev, A. H.] Suleyman Demirel Univ, Dept Civil Engn, Engn Fac, TR-32260 Isparta, Turkey; [Turan, F.; Zerin, Z.] Ondokuz Mayis Univ, Dept Civil Engn, Engn Fac, TR-55139 Samsun, Turkeyen_US
dc.descriptionTuran, Ferruh/0000-0002-4160-712Xen_US
dc.description.abstractThe purpose of this article is to study the large amplitude vibration behavior of functionally graded orthotropic double-curved shallow shells (FGODCSSs), such as the shallow spherical and hyperbolic paraboloidal shells. After mathematical modeling of the properties of the FG orthotropic material, von-Karman type non-linear basic relations are created, and at the next stage the non-linear equations of motion for double-curved shallow shells are derived. The non-linear basic partial differential equations of FGODCSSs are converted to non-linear ordinary differential equations using the principle of superposition and the Galerkin method. Then non-linear equations are solved by applying the method proposed by Grigolyuk [46] and get the expressions for the frequencyamplitude relationship and the ratio of the nonlinear frequency to the linear frequency for FGODCSSs. Using these expressions, the results are compared with the results in the literature, and after checking the reliability and accuracy of the proposed formulation, specific numerical calculations are performed. For specific analyzes, the homogenous and FG orthotropic shallow spherical and hyperbolic paraboloidal shells are used, and their large amplitude vibration behaviors are discussed in comparison with each other, and various examples reveal that the influence of heterogeneity is noticeable.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1016/j.ijpvp.2020.104235
dc.identifier.issn0308-0161
dc.identifier.issn1879-3541
dc.identifier.scopus2-s2.0-85094316588
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.1016/j.ijpvp.2020.104235
dc.identifier.urihttps://hdl.handle.net/20.500.12712/41853
dc.identifier.volume188en_US
dc.identifier.wosWOS:000596816300043
dc.identifier.wosqualityQ1
dc.language.isoenen_US
dc.publisherElsevier Sci Ltden_US
dc.relation.ispartofInternational Journal of Pressure Vessels and Pipingen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectLarge Amplitude Vibrationen_US
dc.subjectFG Orthotropic Materialen_US
dc.subjectDouble-Curved Shallow Shellsen_US
dc.subjectNonlinear Frequenciesen_US
dc.titleLarge-Amplitude Vibration of Functionally Graded Orthotropic Double-Curved Shallow Spherical and Hyperbolic Paraboloidal Shellsen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files