Publication:
Numerical Approximation for Nonlinear Noisy Leaky Integrate-and Neuronal Model

dc.authorscopusid57209076641
dc.authorscopusid57202809964
dc.authorscopusid36013313700
dc.authorscopusid10639356300
dc.contributor.authorSharma, D.
dc.contributor.authorSingh, P.
dc.contributor.authorAgarwal, R.P.
dc.contributor.authorKoksal, Mehmet Emir
dc.date.accessioned2020-06-21T12:27:15Z
dc.date.available2020-06-21T12:27:15Z
dc.date.issued2019
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Sharma] Dipty, School of Mathematics, Thapar Institute of Engineering & Technology, Patiala, PB, India; [Singh] Paramjeet, School of Mathematics, Thapar Institute of Engineering & Technology, Patiala, PB, India; [Agarwal] Ravi P., Department of Mathematics, Texas A&M University-Kingsville, Kingsville, TX, United States; [Koksal] Mehmet Emir, Department of Mathematics, Ondokuz Mayis Üniversitesi, Samsun, Turkeyen_US
dc.description.abstractWe consider a noisy leaky integrate-and-fire (NLIF) neuron model. The resulting nonlinear time-dependent partial differential equation (PDE) is a Fokker-Planck Equation (FPE) which describes the evolution of the probability density. The finite element method (FEM) has been proposed to solve the governing PDE. In the realistic neural network, the irregular space is always determined. Thus, FEM can be used to tackle those situations whereas other numerical schemes are restricted to the problems with only a finite regular space. The stability of the proposed scheme is also discussed. A comparison with the existing Weighted Essentially Non-Oscillatory (WENO) finite difference approximation is also provided. The numerical results reveal that FEM may be a better scheme for the solution of such types of model problems. The numerical scheme also reduces computational time in comparison with time required by other schemes. © 2019 by the authors.en_US
dc.identifier.doi10.3390/math7040363
dc.identifier.issn2227-7390
dc.identifier.issue4en_US
dc.identifier.scopus2-s2.0-85066452926
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.3390/math7040363
dc.identifier.volume7en_US
dc.identifier.wosWOS:000467495500056
dc.identifier.wosqualityQ1
dc.language.isoenen_US
dc.publisherMDPI AG indexing@mdpi.com Postfach Basel CH-4005en_US
dc.relation.ispartofMathematicsen_US
dc.relation.journalMathematicsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectFokker-Planck-Kolmogorov Equationsen_US
dc.subjectGalerkin Finite Element Methoden_US
dc.subjectNeuronal Variabilityen_US
dc.titleNumerical Approximation for Nonlinear Noisy Leaky Integrate-and Neuronal Modelen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files