Publication: Generalizations of ⊕-Supplemented Modules
Loading...
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
We introduce ⊕ -radical supplemented modules and strongly ⊕ -radical supplemented modules (briefly, srs ⊕-modules) as proper generalizations of ⊕ -supplemented modules. We prove that (1) a semilocal ring R is left perfect if and only if every left R-module is an ⊕ -radical supplemented module; (2) a commutative ring R is an Artinian principal ideal ring if and only if every left R-module is an srs ⊕-module; (3) over a local Dedekind domain, every ⊕ -radical supplemented module is an srs ⊕-module. Moreover, we completely determine the structure of these modules over local Dedekind domains. © 2013 Springer Science+Business Media New York.
Description
Keywords
Citation
WoS Q
Q3
Scopus Q
Q3
Source
Ukrainian Mathematical Journal
Volume
65
Issue
4
Start Page
612
End Page
622
