Publication:
On Function Spaces with Fractional Fourier Transform in Weighted Lebesgue Spaces

dc.authorscopusid56543502200
dc.authorscopusid55573680700
dc.contributor.authorToksoy, E.
dc.contributor.authorSandikçi, A.
dc.date.accessioned2020-06-21T13:47:27Z
dc.date.available2020-06-21T13:47:27Z
dc.date.issued2015
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Toksoy] Erdem, Department of Mathematics, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Sandikçi] Ayşe, Department of Mathematics, Ondokuz Mayis Üniversitesi, Samsun, Turkeyen_US
dc.description.abstractLet w and ω be weight functions on (Formula presented.). In this work, we define (Formula presented.) to be the vector space of (Formula presented.) such that the fractional Fourier transform (Formula presented.) belongs to (Formula presented.) for (Formula presented.). We endow this space with the sum norm (Formula presented.) and show that (Formula presented.) becomes a Banach space and invariant under time-frequency shifts. Further we show that the mapping (Formula presented.) is continuous from (Formula presented.), the mapping (Formula presented.) is continuous from (Formula presented.) and (Formula presented.) is a Banach module over (Formula presented.) with Θ convolution operation. At the end of this work, we discuss inclusion properties of these spaces. © 2015, Toksoy and Sandıkçı; licensee Springer.en_US
dc.identifier.doi10.1186/s13660-015-0609-4
dc.identifier.issn1025-5834
dc.identifier.issue1en_US
dc.identifier.scopus2-s2.0-84924368184
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.1186/s13660-015-0609-4
dc.identifier.volume2015en_US
dc.identifier.wosWOS:000350678400002
dc.language.isoenen_US
dc.publisherSpringer International Publishingen_US
dc.relation.ispartofJournal of Inequalities and Applicationsen_US
dc.relation.journalJournal of Inequalities and Applicationsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectBanach Moduleen_US
dc.subjectConvolutionen_US
dc.subjectFractional Fourier Transformen_US
dc.titleOn Function Spaces with Fractional Fourier Transform in Weighted Lebesgue Spacesen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files