Publication: Gabor Analysis of the Spaces M(P,q,w) (Rd) and S(P,q,r,w,ω) (Rd)
| dc.authorscopusid | 55573680700 | |
| dc.authorscopusid | 55666393900 | |
| dc.contributor.author | Sandikçi, A. | |
| dc.contributor.author | Turan Gürkanli, A.T. | |
| dc.date.accessioned | 2020-06-21T14:41:51Z | |
| dc.date.available | 2020-06-21T14:41:51Z | |
| dc.date.issued | 2011 | |
| dc.department | Ondokuz Mayıs Üniversitesi | en_US |
| dc.department-temp | [Sandikçi] Ayşe, Department of Mathematics, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Turan Gürkanli] Ahmet, Department of Mathematics, Ondokuz Mayis Üniversitesi, Samsun, Turkey | en_US |
| dc.description.abstract | Let g be a non-zero rapidly decreasing function and w be a weight function. In this article in analog to modulation space, we define the space M(p,q,w) (Rd) to be the subspace of tempered distributions f e{open} S'(Rd) such that the Gabor transform V<inf>g</inf>(f) of f is in the weighted Lorentz space L(p,q,wdμ)(R2d). We endow this space with a suitable norm and show that it becomes a Banach space and invariant under time frequence shifts for 1≤p,q≤∞ We also investigate the embeddings between these spaces and the dual space of M(p,q,w)(Rd). Later we define the space S(p,q,r,w,ω)Rd for 1 < p < ∞, 1 ≤ q ≤ ∞ We endow it with a sum norm and show that it becomes a Banach convolution algebra. We also discuss some properties of S(p,q,r,w,ω)(Rd). At the end of this article, we characterize the multipliers of the spaces M(p,q,w)(Rd) and S(p,q,r,w,ω)(Rd). © 2011 Wuhan Institute of Physics and Mathematics. | en_US |
| dc.identifier.doi | 10.1016/S0252-9602(11)60216-6 | |
| dc.identifier.endpage | 158 | en_US |
| dc.identifier.issn | 0252-9602 | |
| dc.identifier.issn | 1572-9087 | |
| dc.identifier.issue | 1 | en_US |
| dc.identifier.scopus | 2-s2.0-78650995464 | |
| dc.identifier.scopusquality | Q3 | |
| dc.identifier.startpage | 141 | en_US |
| dc.identifier.uri | https://doi.org/10.1016/S0252-9602(11)60216-6 | |
| dc.identifier.volume | 31 | en_US |
| dc.identifier.wos | WOS:000287165300016 | |
| dc.identifier.wosquality | Q1 | |
| dc.language.iso | en | en_US |
| dc.publisher | Springer | en_US |
| dc.relation.ispartof | Acta Mathematica Scientia | en_US |
| dc.relation.journal | Acta Mathematica Scientia | en_US |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Gabor Transform | en_US |
| dc.subject | Multiplier | en_US |
| dc.subject | Weighted Lorentz Space | en_US |
| dc.title | Gabor Analysis of the Spaces M(P,q,w) (Rd) and S(P,q,r,w,ω) (Rd) | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication |
