Publication:
A New Approach Based on the Optimization of the Length of Intervals in Fuzzy Time Series

dc.authorscopusid23093703600
dc.authorscopusid23092915500
dc.authorscopusid57211930065
dc.authorscopusid24282075600
dc.authorscopusid24282155300
dc.contributor.authorEgrioglu, E.
dc.contributor.authorAladag, C.H.
dc.contributor.authorBaşaran, M.A.
dc.contributor.authorYolcu, U.
dc.contributor.authorUslu, V.R.
dc.date.accessioned2020-06-21T14:46:24Z
dc.date.available2020-06-21T14:46:24Z
dc.date.issued2011
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Egrioglu] Erol, Department of Statistics, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Aladag] Cagdas Hakan, Department of Statistics, Hacettepe Üniversitesi, Ankara, Turkey; [Başaran] Murat Alper, Department of Mathematics, Niğde Ömer Halisdemir University, Nigde, Nigde, Turkey; [Yolcu] Ufuk, Department of Statistics, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Uslu] Vedide Rezan, Department of Statistics, Ondokuz Mayis Üniversitesi, Samsun, Turkeyen_US
dc.description.abstractIn fuzzy time series analysis, the determination of the interval length is an important issue. In many researches recently done, the length of intervals has been intuitively determined. In order to efficiently determine the length of intervals, two approaches which are based on the average and the distribution have been proposed by Huarng [4]. In this paper, we propose a new method based on the use of a single variable constrained optimization to determine the length of interval. In order to determine optimum length of interval for the best forecasting accuracy, we used a MATLAB function which is employing an algorithm based on golden section search and parabolic interpolation. Mean square error is used as a measure of forecasting accuracy so the objective function value is mean square error value for forecasted observations. The proposed method was employed to forecast the enrollments of the University of Alabama to show the considerable outperforming results. © 2011 IOS Press and the authors. All rights reserved.en_US
dc.identifier.doi10.3233/IFS-2010-0470
dc.identifier.endpage19en_US
dc.identifier.issn1064-1246
dc.identifier.issn1875-8967
dc.identifier.issue1en_US
dc.identifier.scopus2-s2.0-78651303153
dc.identifier.scopusqualityQ3
dc.identifier.startpage15en_US
dc.identifier.urihttps://doi.org/10.3233/IFS-2010-0470
dc.identifier.volume22en_US
dc.identifier.wosWOS:000286099100002
dc.identifier.wosqualityQ4
dc.language.isoenen_US
dc.publisherIOS Pressen_US
dc.relation.ispartofJournal of Intelligent & Fuzzy Systemsen_US
dc.relation.journalJournal of Intelligent & Fuzzy Systemsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectForecastingen_US
dc.subjectFuzzy Setsen_US
dc.subjectFuzzy Time Seriesen_US
dc.subjectLength of Intervalen_US
dc.subjectOptimizationen_US
dc.titleA New Approach Based on the Optimization of the Length of Intervals in Fuzzy Time Seriesen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files