Publication: Ovarian-Adnexal Reporting and Data System MRI Scoring: Diagnostic Accuracy, Interobserver Agreement, and Applicability to Machine Learning
| dc.authorscopusid | 57221696887 | |
| dc.authorscopusid | 57211281452 | |
| dc.authorscopusid | 56463852900 | |
| dc.authorscopusid | 59533284100 | |
| dc.authorscopusid | 59425079300 | |
| dc.authorscopusid | 59532481500 | |
| dc.authorscopusid | 56469100700 | |
| dc.authorwosid | Demirel, Emin/Aac-6547-2019 | |
| dc.authorwosid | Akkaya, Hüseyi̇n/Abo-6226-2022 | |
| dc.authorwosid | Bas, Sevda/Izp-6714-2023 | |
| dc.authorwosid | Baş, Sevda/Izp-6714-2023 | |
| dc.authorwosid | Taş, Zeynel Abidin/Afd-7893-2022 | |
| dc.contributor.author | Akkaya, Huseyin | |
| dc.contributor.author | Demirel, Emin | |
| dc.contributor.author | Dilek, Okan | |
| dc.contributor.author | Akkaya, Tuba Dalgalar | |
| dc.contributor.author | Ozturkcu, Turgay | |
| dc.contributor.author | Erisen, Kubra Karaaslan | |
| dc.contributor.author | Gulek, Bozkurt | |
| dc.contributor.authorID | Di̇lek, Okan/0000-0002-2144-2460 | |
| dc.contributor.authorID | Bas, Sevda/0000-0002-6454-6470 | |
| dc.contributor.authorID | Tas, Zeynel Abidin/0000-0002-5504-4487 | |
| dc.contributor.authorID | Karaaslan Erişen, Kübra/0009-0007-7842-0346 | |
| dc.contributor.authorID | Demirel, Emin/0000-0002-0675-3893 | |
| dc.contributor.authorID | Akkaya, Hüseyin/0000-0001-5821-670X | |
| dc.date.accessioned | 2025-12-11T01:37:04Z | |
| dc.date.issued | 2024 | |
| dc.department | Ondokuz Mayıs Üniversitesi | en_US |
| dc.department-temp | [Akkaya, Huseyin] Ondokuz Mayis Univ, Fac Med, Dept Radiol, Korfez St, TR-55280 Samsun, Turkiye; [Demirel, Emin] Univ Hlth Sci, Afyonkarahisar City Training & Res Hosp, Dept Radiol, TR-03030 Afyonkarahisar, Turkiye; [Dilek, Okan; Ozturkcu, Turgay; Erisen, Kubra Karaaslan; Gulek, Bozkurt] Univ Hlth Sci, Adana City Training & Res Hosp, Dept Radiol, TR-01230 Adana, Turkiye; [Akkaya, Tuba Dalgalar] Samsun Univ, Fac Med, Dept Radiol, TR-55090 Samsun, Turkiye; [Tas, Zeynel Abidin] Univ Hlth Sci, Adana City Training & Res Hosp, Dept Pathol, TR-01230 Adana, Turkiye; [Bas, Sevda] Univ Hlth Sci, Adana City Training & Res Hosp, Dept Gynecol Oncol, TR-01230 Adana, Turkiye | en_US |
| dc.description | Di̇lek, Okan/0000-0002-2144-2460; Bas, Sevda/0000-0002-6454-6470; Tas, Zeynel Abidin/0000-0002-5504-4487; Karaaslan Erişen, Kübra/0009-0007-7842-0346; Demirel, Emin/0000-0002-0675-3893; Akkaya, Hüseyin/0000-0001-5821-670X | en_US |
| dc.description.abstract | Objectives: To evaluate the interobserver agreement and diagnostic accuracy of ovarian-adnexal reporting and data system magnetic resonance imaging (O-RADS MRI) and applicability to machine learning. Methods: Dynamic contrast-enhanced pelvic MRI examinations of 471 lesions were retrospectively analysed and assessed by 3 radiologists according to O-RADS MRI criteria. Radiomic data were extracted from T2 and post-contrast fat-suppressed T1-weighted images. Using these data, an artificial neural network (ANN), support vector machine, random forest, and naive Bayes models were constructed. Results: Among all readers, the lowest agreement was found for the O-RADS 4 group (kappa: 0.669; 95% confidence interval [CI] 0.634-0.733), followed by the O-RADS 5 group (kappa: 0.709; 95% CI 0.678-0.754). O-RADS 4 predicted a malignancy with an area under the curve (AUC) value of 74.3% (95% CI 0.701-0.782), and O-RADS 5 with an AUC of 95.5% (95% CI 0.932-0.972) (P < .001). Among the machine learning models, ANN achieved the highest success, distinguishing O-RADS groups with an AUC of 0.948, a precision of 0.861, and a recall of 0.824. Conclusion: The interobserver agreement and diagnostic sensitivity of the O-RADS MRI in assigning O-RADS 4-5 were not perfect, indicating a need for structural improvement. Integrating artificial intelligence into MRI protocols may enhance their performance. Advances in knowledge: Machine learning can achieve high accuracy in the correct classification of O-RADS MRI. Malignancy prediction rates were 74% for O-RADS 4 and 95% for O-RADS 5. | en_US |
| dc.description.woscitationindex | Science Citation Index Expanded | |
| dc.identifier.doi | 10.1093/bjr/tqae221 | |
| dc.identifier.endpage | 261 | en_US |
| dc.identifier.issn | 0007-1285 | |
| dc.identifier.issn | 1748-880X | |
| dc.identifier.issue | 1166 | en_US |
| dc.identifier.pmid | 39471474 | |
| dc.identifier.scopus | 2-s2.0-85216330398 | |
| dc.identifier.scopusquality | Q2 | |
| dc.identifier.startpage | 254 | en_US |
| dc.identifier.uri | https://doi.org/10.1093/bjr/tqae221 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12712/44912 | |
| dc.identifier.volume | 98 | en_US |
| dc.identifier.wos | WOS:001360570400001 | |
| dc.identifier.wosquality | Q1 | |
| dc.language.iso | en | en_US |
| dc.publisher | Oxford University Press | en_US |
| dc.relation.ispartof | British Journal of Radiology | en_US |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | O-RADS MRI | en_US |
| dc.subject | Artificial Intelligence | en_US |
| dc.subject | Interobserver Agreement | en_US |
| dc.subject | Radiomics | en_US |
| dc.subject | Machine Learning | en_US |
| dc.title | Ovarian-Adnexal Reporting and Data System MRI Scoring: Diagnostic Accuracy, Interobserver Agreement, and Applicability to Machine Learning | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication |
