Publication:
Ovarian-Adnexal Reporting and Data System MRI Scoring: Diagnostic Accuracy, Interobserver Agreement, and Applicability to Machine Learning

dc.authorscopusid57221696887
dc.authorscopusid57211281452
dc.authorscopusid56463852900
dc.authorscopusid59533284100
dc.authorscopusid59425079300
dc.authorscopusid59532481500
dc.authorscopusid56469100700
dc.authorwosidDemirel, Emin/Aac-6547-2019
dc.authorwosidAkkaya, Hüseyi̇n/Abo-6226-2022
dc.authorwosidBas, Sevda/Izp-6714-2023
dc.authorwosidBaş, Sevda/Izp-6714-2023
dc.authorwosidTaş, Zeynel Abidin/Afd-7893-2022
dc.contributor.authorAkkaya, Huseyin
dc.contributor.authorDemirel, Emin
dc.contributor.authorDilek, Okan
dc.contributor.authorAkkaya, Tuba Dalgalar
dc.contributor.authorOzturkcu, Turgay
dc.contributor.authorErisen, Kubra Karaaslan
dc.contributor.authorGulek, Bozkurt
dc.contributor.authorIDDi̇lek, Okan/0000-0002-2144-2460
dc.contributor.authorIDBas, Sevda/0000-0002-6454-6470
dc.contributor.authorIDTas, Zeynel Abidin/0000-0002-5504-4487
dc.contributor.authorIDKaraaslan Erişen, Kübra/0009-0007-7842-0346
dc.contributor.authorIDDemirel, Emin/0000-0002-0675-3893
dc.contributor.authorIDAkkaya, Hüseyin/0000-0001-5821-670X
dc.date.accessioned2025-12-11T01:37:04Z
dc.date.issued2024
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Akkaya, Huseyin] Ondokuz Mayis Univ, Fac Med, Dept Radiol, Korfez St, TR-55280 Samsun, Turkiye; [Demirel, Emin] Univ Hlth Sci, Afyonkarahisar City Training & Res Hosp, Dept Radiol, TR-03030 Afyonkarahisar, Turkiye; [Dilek, Okan; Ozturkcu, Turgay; Erisen, Kubra Karaaslan; Gulek, Bozkurt] Univ Hlth Sci, Adana City Training & Res Hosp, Dept Radiol, TR-01230 Adana, Turkiye; [Akkaya, Tuba Dalgalar] Samsun Univ, Fac Med, Dept Radiol, TR-55090 Samsun, Turkiye; [Tas, Zeynel Abidin] Univ Hlth Sci, Adana City Training & Res Hosp, Dept Pathol, TR-01230 Adana, Turkiye; [Bas, Sevda] Univ Hlth Sci, Adana City Training & Res Hosp, Dept Gynecol Oncol, TR-01230 Adana, Turkiyeen_US
dc.descriptionDi̇lek, Okan/0000-0002-2144-2460; Bas, Sevda/0000-0002-6454-6470; Tas, Zeynel Abidin/0000-0002-5504-4487; Karaaslan Erişen, Kübra/0009-0007-7842-0346; Demirel, Emin/0000-0002-0675-3893; Akkaya, Hüseyin/0000-0001-5821-670Xen_US
dc.description.abstractObjectives: To evaluate the interobserver agreement and diagnostic accuracy of ovarian-adnexal reporting and data system magnetic resonance imaging (O-RADS MRI) and applicability to machine learning. Methods: Dynamic contrast-enhanced pelvic MRI examinations of 471 lesions were retrospectively analysed and assessed by 3 radiologists according to O-RADS MRI criteria. Radiomic data were extracted from T2 and post-contrast fat-suppressed T1-weighted images. Using these data, an artificial neural network (ANN), support vector machine, random forest, and naive Bayes models were constructed. Results: Among all readers, the lowest agreement was found for the O-RADS 4 group (kappa: 0.669; 95% confidence interval [CI] 0.634-0.733), followed by the O-RADS 5 group (kappa: 0.709; 95% CI 0.678-0.754). O-RADS 4 predicted a malignancy with an area under the curve (AUC) value of 74.3% (95% CI 0.701-0.782), and O-RADS 5 with an AUC of 95.5% (95% CI 0.932-0.972) (P < .001). Among the machine learning models, ANN achieved the highest success, distinguishing O-RADS groups with an AUC of 0.948, a precision of 0.861, and a recall of 0.824. Conclusion: The interobserver agreement and diagnostic sensitivity of the O-RADS MRI in assigning O-RADS 4-5 were not perfect, indicating a need for structural improvement. Integrating artificial intelligence into MRI protocols may enhance their performance. Advances in knowledge: Machine learning can achieve high accuracy in the correct classification of O-RADS MRI. Malignancy prediction rates were 74% for O-RADS 4 and 95% for O-RADS 5.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1093/bjr/tqae221
dc.identifier.endpage261en_US
dc.identifier.issn0007-1285
dc.identifier.issn1748-880X
dc.identifier.issue1166en_US
dc.identifier.pmid39471474
dc.identifier.scopus2-s2.0-85216330398
dc.identifier.scopusqualityQ2
dc.identifier.startpage254en_US
dc.identifier.urihttps://doi.org/10.1093/bjr/tqae221
dc.identifier.urihttps://hdl.handle.net/20.500.12712/44912
dc.identifier.volume98en_US
dc.identifier.wosWOS:001360570400001
dc.identifier.wosqualityQ1
dc.language.isoenen_US
dc.publisherOxford University Pressen_US
dc.relation.ispartofBritish Journal of Radiologyen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectO-RADS MRIen_US
dc.subjectArtificial Intelligenceen_US
dc.subjectInterobserver Agreementen_US
dc.subjectRadiomicsen_US
dc.subjectMachine Learningen_US
dc.titleOvarian-Adnexal Reporting and Data System MRI Scoring: Diagnostic Accuracy, Interobserver Agreement, and Applicability to Machine Learningen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files