Publication:
Comparison of Some Non-Linear Functions to Describe the Growth for Linda Geese With CART and XGBoost Algorithms

dc.authorscopusid56957224200
dc.authorscopusid24385660900
dc.authorscopusid6602764409
dc.authorscopusid58095721700
dc.authorwosidÖnder, Hasan/Aai-4149-2021
dc.authorwosidTırınk, Cem/Gry-5893-2022
dc.contributor.authorTirink, Cem
dc.contributor.authorOnder, Hasan
dc.contributor.authorYurtseven, Sabri
dc.contributor.authorAkil, Zeliha Kaya
dc.contributor.authorIDTirink, Cem/0000-0001-6902-5837
dc.date.accessioned2025-12-11T01:10:06Z
dc.date.issued2022
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Tirink, Cem] Igdir Univ, Fac Agr, Dept Anim Sci, Igdir, Turkey; [Onder, Hasan] Ondokuz Mayis Univ, Fac Agr, Dept Anim Sci, Samsun, Turkey; [Yurtseven, Sabri; Akil, Zeliha Kaya] Harran Univ, Fac Agr, Dept Anim Sci, Sanliurfa, Turkeyen_US
dc.descriptionTirink, Cem/0000-0001-6902-5837;en_US
dc.description.abstractThe aim of this study was to determine the best non-linear function describing the growth of the Linda goose breed. To achieve this aim, five non-linear functions, such as exponential, logistic, von Bertalanffy, Brody and Gompertz, were employed to define the live weight-age relationship for male and female Linda geese. In the study, 2 397 body weight-age records from 75 females and 66 males collected from three days to 17 weeks of age were evaluated using the "easynls" and "nlstools" packages for growth modelling of the Linda goose in R software. Each model was analysed in the live weight records of all the geese separately for males and females. To measure the predictive quality of the growth functions used individually here, model goodness of fit criteria, such as the coefficient of determination (R-2), adjusted coefficient of determination (R-adj(2)), root mean square error (RMSE), Akaike's information criterion (AIC) and Bayesian information criterion (BIC) were implemented. Among the evaluated non-linear functions, von Bertalanffy model gave the best fit of describing the growth curve of female and male Linda geese. Based on the "rpart", "rpart.plot", and "caret" R packages, the CART and XGBoost algorithms were specified in the prediction of live weight of Linda geese at 17 weeks of age from the growth parameters of the von Bertalanffy model and the sex factor. XGBoost produced better results in superiority compared with the CART algorithm. In conclusion, it could be suggested that the von Bertalanffy model might help geese breeders to determine the appropriate slaughtering time, feeding regimes, and overcome flock management problems. The results of the XGBoost algorithm might present a good reference for breeders to establish breed standards and selection strategies of Linda geese in the growth parameters for breeding purposes.en_US
dc.description.sponsorshipFaculty of Agriculture, Harran University [HUBAB-20052]en_US
dc.description.sponsorshipSupported by the Faculty of Agriculture, Harran University (Project No. HUBAB-20052).en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.17221/129/2022-CJAS
dc.identifier.endpage464en_US
dc.identifier.issn1212-1819
dc.identifier.issn1805-9309
dc.identifier.issue11en_US
dc.identifier.scopus2-s2.0-85147687090
dc.identifier.scopusqualityQ2
dc.identifier.startpage454en_US
dc.identifier.urihttps://doi.org/10.17221/129/2022-CJAS
dc.identifier.urihttps://hdl.handle.net/20.500.12712/41797
dc.identifier.volume67en_US
dc.identifier.wosWOS:000891241900001
dc.identifier.wosqualityQ3
dc.language.isoenen_US
dc.publisherCzech Academy of Agricultural Sciencesen_US
dc.relation.ispartofCzech Journal of Animal Scienceen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectBody Weighten_US
dc.subjectGoose Growth Curveen_US
dc.subjectNon-Linear Modelsen_US
dc.subjectXGBoosten_US
dc.subjectCARTen_US
dc.titleComparison of Some Non-Linear Functions to Describe the Growth for Linda Geese With CART and XGBoost Algorithmsen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files