Publication:
Some Compact and Non-Compact Embedding Theorems for the Function Spaces Defined by Fractional Fourier Transform

dc.authorscopusid56543502200
dc.authorscopusid55573680700
dc.authorwosidSandikci, Ayse/V-7351-2019
dc.authorwosidToksoy, Erdem/Ahe-2884-2022
dc.contributor.authorToksoy, Erdem
dc.contributor.authorSandikci, Ayse
dc.contributor.authorIDToksoy, Erdem/0000-0003-3597-6161
dc.date.accessioned2025-12-11T01:10:09Z
dc.date.issued2021
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Toksoy, Erdem; Sandikci, Ayse] Ondokuz Mayis Univ, Fac Art & Sci, Dept Math, TR-55139 Samsun, Turkeyen_US
dc.descriptionToksoy, Erdem/0000-0003-3597-6161en_US
dc.description.abstractThe fractional Fourier transform is a generalization of the classical Fourier transform through an angular parameter alpha. This transform uses in quantum optics and quantum wave field reconstruction, also its application provides solving some differrential equations which arise in quantum mechanics. The aim of this work is to discuss compact and non-compact embeddings between the spaces A(alpha,p)(w,omega) (R-d) which are the set of functions in L-w(1)(R-d) whose fractional Fourier transform are in L-omega(p) (R-d). Moreover, some relevant counterexamples are indicated.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.15672/hujms.795924
dc.identifier.endpage1635en_US
dc.identifier.issn2651-477X
dc.identifier.issue6en_US
dc.identifier.scopus2-s2.0-85126325742
dc.identifier.scopusqualityQ3
dc.identifier.startpage1620en_US
dc.identifier.trdizinid495831
dc.identifier.urihttps://doi.org/10.15672/hujms.795924
dc.identifier.urihttps://search.trdizin.gov.tr/en/yayin/detay/495831/some-compact-and-non-compact-embedding-theorems-for-the-function-spaces-defined-by-fractional-fourier-transform
dc.identifier.urihttps://hdl.handle.net/20.500.12712/41804
dc.identifier.volume50en_US
dc.identifier.wosWOS:000731750000004
dc.identifier.wosqualityQ2
dc.language.isoenen_US
dc.publisherHacettepe Univ, Fac Scien_US
dc.relation.ispartofHacettepe Journal of Mathematics and Statisticsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectFractional Fourier Transformen_US
dc.subjectWeighted Lebesgue Spacesen_US
dc.subjectCompact Embeddingen_US
dc.titleSome Compact and Non-Compact Embedding Theorems for the Function Spaces Defined by Fractional Fourier Transformen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files