Publication: Some Compact and Non-Compact Embedding Theorems for the Function Spaces Defined by Fractional Fourier Transform
| dc.authorscopusid | 56543502200 | |
| dc.authorscopusid | 55573680700 | |
| dc.authorwosid | Sandikci, Ayse/V-7351-2019 | |
| dc.authorwosid | Toksoy, Erdem/Ahe-2884-2022 | |
| dc.contributor.author | Toksoy, Erdem | |
| dc.contributor.author | Sandikci, Ayse | |
| dc.contributor.authorID | Toksoy, Erdem/0000-0003-3597-6161 | |
| dc.date.accessioned | 2025-12-11T01:10:09Z | |
| dc.date.issued | 2021 | |
| dc.department | Ondokuz Mayıs Üniversitesi | en_US |
| dc.department-temp | [Toksoy, Erdem; Sandikci, Ayse] Ondokuz Mayis Univ, Fac Art & Sci, Dept Math, TR-55139 Samsun, Turkey | en_US |
| dc.description | Toksoy, Erdem/0000-0003-3597-6161 | en_US |
| dc.description.abstract | The fractional Fourier transform is a generalization of the classical Fourier transform through an angular parameter alpha. This transform uses in quantum optics and quantum wave field reconstruction, also its application provides solving some differrential equations which arise in quantum mechanics. The aim of this work is to discuss compact and non-compact embeddings between the spaces A(alpha,p)(w,omega) (R-d) which are the set of functions in L-w(1)(R-d) whose fractional Fourier transform are in L-omega(p) (R-d). Moreover, some relevant counterexamples are indicated. | en_US |
| dc.description.woscitationindex | Science Citation Index Expanded | |
| dc.identifier.doi | 10.15672/hujms.795924 | |
| dc.identifier.endpage | 1635 | en_US |
| dc.identifier.issn | 2651-477X | |
| dc.identifier.issue | 6 | en_US |
| dc.identifier.scopus | 2-s2.0-85126325742 | |
| dc.identifier.scopusquality | Q3 | |
| dc.identifier.startpage | 1620 | en_US |
| dc.identifier.trdizinid | 495831 | |
| dc.identifier.uri | https://doi.org/10.15672/hujms.795924 | |
| dc.identifier.uri | https://search.trdizin.gov.tr/en/yayin/detay/495831/some-compact-and-non-compact-embedding-theorems-for-the-function-spaces-defined-by-fractional-fourier-transform | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12712/41804 | |
| dc.identifier.volume | 50 | en_US |
| dc.identifier.wos | WOS:000731750000004 | |
| dc.identifier.wosquality | Q2 | |
| dc.language.iso | en | en_US |
| dc.publisher | Hacettepe Univ, Fac Sci | en_US |
| dc.relation.ispartof | Hacettepe Journal of Mathematics and Statistics | en_US |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Fractional Fourier Transform | en_US |
| dc.subject | Weighted Lebesgue Spaces | en_US |
| dc.subject | Compact Embedding | en_US |
| dc.title | Some Compact and Non-Compact Embedding Theorems for the Function Spaces Defined by Fractional Fourier Transform | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication |
