Publication:
A Hybrid Coot Based CNN Model for Thyroid Cancer Detection

dc.authorscopusid59778578900
dc.authorscopusid36084505100
dc.authorscopusid8616530000
dc.authorwosidDandil, Beşir/V-5980-2018
dc.authorwosidIlkilicaytac, Zeynep/Ouv-7789-2025
dc.contributor.authorAytac, Zeynep lkilic
dc.contributor.authorIseri, Ismail
dc.contributor.authorDandil, Besir
dc.contributor.authorIDDandil, Beşir/0000-0002-3625-5027
dc.contributor.authorIDIlkiliç, Zeynep/0000-0003-1828-1181
dc.date.accessioned2025-12-11T01:17:56Z
dc.date.issued2025
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Aytac, Zeynep lkilic] Ondokuz Mayis Univ, Organized Ind Zone Social Facil Area 513 St 6, Samsun, Turkiye; [Iseri, Ismail] Ondokuz Mayis Univ, Fac Engn, OMU Kurupelit Campus, TR-55139 Samsun, Turkiye; [Dandil, Besir] Mustafa Kemal Univ, TR-31060 Hatay, Turkiyeen_US
dc.descriptionDandil, Beşir/0000-0002-3625-5027; Ilkiliç, Zeynep/0000-0003-1828-1181en_US
dc.description.abstractThyroid cancer is one of the most common endocrine malignancies, and early diagnosis is crucial for effective treatment. Fine-needle aspiration biopsy (FNAB) is widely used for diagnosis, but its accuracy depends on expert interpretation, which can be subjective. Recent advances in deep learning, particularly Convolutional Neural Networks (CNNs), have shown promise in automating and improving diagnostic accuracy from biopsy images. However, optimizing CNN architectures remains a challenge, as selecting the best layer parameters significantly impacts performance. Traditional approaches for selecting optimal CNN parameters often depend on exhaustive trial-and-error methods, which are computationally expensive and do not always yield globally optimal solutions. This process is both time-consuming and does not guarantee the precise attainment of an optimal CNN model. In this study, a novel approach is introduced to optimize CNN parameters by utilizing the COOT Metaheuristic Optimization Algorithm, proposing a new model named COOT-CNN for thyroid cancer detection. The COOT algorithm, formulated in 2021 and inspired by the behavioral optimization of waterfowl, is employed in this research to determine the optimal layers and parameters of the CNN model for thyroid cancer diagnosis. This method facilitates efficient optimization of layer parameters through a well-designed coding scheme. The model's efficacy is assessed using thyroid fine needle aspiration biopsy data, categorized into two classes. Performance of the proposed approach is evaluated by comparing it with traditional CNN, Particle Swarm Optimization-based CNN model (PSO-CNN), and Gray Wolf Optimization-based CNN model (GWO-CNN). The proposed model was found to achieve higher accuracy compared to conventional CNN, PSO-CNN, and GWO-CNN models.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1016/j.csi.2025.104018
dc.identifier.issn0920-5489
dc.identifier.issn1872-7018
dc.identifier.scopus2-s2.0-105004406540
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1016/j.csi.2025.104018
dc.identifier.urihttps://hdl.handle.net/20.500.12712/42662
dc.identifier.volume94en_US
dc.identifier.wosWOS:001490273200001
dc.identifier.wosqualityQ2
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofComputer Standards & Interfacesen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCoot Optimizationen_US
dc.subjectMetaheuristicen_US
dc.subjectConvolutional Neural Networken_US
dc.subjectBiopsy Imagesen_US
dc.subjectThyroid Canceren_US
dc.titleA Hybrid Coot Based CNN Model for Thyroid Cancer Detectionen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files