Publication:
A Hybrid Approach to Classify Power Quality Problems in Distribution Systems

dc.authorscopusid22433630600
dc.authorscopusid57210578628
dc.authorwosidAkpinar, Kubra Nur/Oui-5793-2025
dc.authorwosidAkpınar, Kübra Nur/Aal-9252-2020
dc.contributor.authorOzgonenel, Okan
dc.contributor.authorAkpinar, Kubra Nur
dc.contributor.authorIDAkpınar, Kübra Nur/0000-0003-4579-4070
dc.date.accessioned2025-12-11T00:51:16Z
dc.date.issued2022
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Ozgonenel, Okan; Akpinar, Kubra Nur] Ondokuz Mayis Univ, Elect & Elect Engn, Samsun, Turkeyen_US
dc.descriptionAkpınar, Kübra Nur/0000-0003-4579-4070en_US
dc.description.abstractElectrical power systems are expected to transmit continuously nominal rated sinusoidal voltage and current to consumers. However, the widespread use of power electronics has brought power quality problems. This study performs classification of power quality disturbances using an artificial neural network (ANN). The most appropriate ANN structure was determined using the Box-Behnken experimental design method. Nine types of disturbance (no fault, voltage sag, voltage, swell, flicker, harmonics, transient, DC component, electromagnetic interference, and instant interruption) were investigated in computer simulations. The feature vectors used in the identification of the different types of disturbances were produced using the discrete wavelet transform and principal component analysis. Our results show that the optimized feed forward multilayer ANN structure successfully distinguishes power quality disturbances in simulation data and was also able to identify these disturbances in real time data from substations.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.36909/jer.10717
dc.identifier.endpage233en_US
dc.identifier.issn2307-1877
dc.identifier.issn2307-1885
dc.identifier.scopus2-s2.0-85144056773
dc.identifier.scopusqualityQ3
dc.identifier.startpage219en_US
dc.identifier.urihttps://doi.org/10.36909/jer.10717
dc.identifier.urihttps://hdl.handle.net/20.500.12712/39707
dc.identifier.volume10en_US
dc.identifier.wosWOS:000891783100013
dc.identifier.wosqualityQ2
dc.language.isoenen_US
dc.publisherAcademic Publication Councilen_US
dc.relation.ispartofJournal of Engineering Researchen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectPower Quality (PQ)en_US
dc.subjectOptimizationen_US
dc.subjectDisturbanceen_US
dc.subjectArtificial Neural Network (ANN)en_US
dc.subjectExperimental Designen_US
dc.titleA Hybrid Approach to Classify Power Quality Problems in Distribution Systemsen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files