Publication: Integration of Geochemical Analysis and K-Means Clustering for Sustainable Management of Various Dam Sediments
| dc.authorscopusid | 57211447089 | |
| dc.authorscopusid | 6602123654 | |
| dc.authorscopusid | 60130796200 | |
| dc.authorscopusid | 25960137000 | |
| dc.authorscopusid | 37031325400 | |
| dc.authorscopusid | 60130543900 | |
| dc.authorwosid | Karakus, Selcan/D-1532-2019 | |
| dc.authorwosid | Akarsu, Canan/Jze-3123-2024 | |
| dc.authorwosid | Kahyaoglu, Ibrahim Mizan/Hgv-1563-2022 | |
| dc.authorwosid | Kucukdeniz, Tarik/B-4253-2010 | |
| dc.contributor.author | Kahyaoglu, Ibrahim Mizan | |
| dc.contributor.author | Uyanik, Ahmet | |
| dc.contributor.author | Akarsu, Canan Hazal | |
| dc.contributor.author | Kucukdeniz, Tarik | |
| dc.contributor.author | Karakus, Selcan | |
| dc.contributor.author | Guney, Murat | |
| dc.date.accessioned | 2025-12-11T00:47:59Z | |
| dc.date.issued | 2025 | |
| dc.department | Ondokuz Mayıs Üniversitesi | en_US |
| dc.department-temp | [Kahyaoglu, Ibrahim Mizan; Uyanik, Ahmet] Ondokuz Mayis Univ, Sci Fac, Dept Chem, Samsun, Turkiye; [Akarsu, Canan Hazal; Kucukdeniz, Tarik] Istanbul Univ Cerrahpasa, Fac Engn, Dept Ind Engn, TR-34320 Istanbul, Turkiye; [Karakus, Selcan] Istanbul Univ Cerrahpasa, Fac Engn, Dept Chem, Istanbul, Turkiye; [Guney, Murat] Seyh Edebali Univ, Engn Fac, Dept Chem Engn, Bilecik, Turkiye; [Karakus, Selcan] Hlth Biotechnol Joint Res & Applicat Ctr Excellenc, TR-34220 Istanbul, Turkiye | en_US |
| dc.description.abstract | Optimizing the use of existing dams can reduce the need for new construction and support sustainable dam management. In this study, key sediment parameters including humic acid (HA), fulvic acid (FA), %C, %H, %N, total organic matter (TOM), pH, conductivity, and shrink/swell capacity were analyzed. Heavy metal concentrations ranged from 1.62 to 7.74 mg/kg (As), 1.40-2.91 mg/kg (Cd), 6.79-18.44 mg/kg (Co), 19.46-85.61 mg/ kg (Cr), 21.12-63.60 mg/kg (Cu), 8000-46,500 mg/kg (Fe), 260-1120 mg/kg (Mn), 27.12-180 mg/kg (Ni), 2.52-10.22 mg/kg (Pb), and 30.50-88.10 mg/kg (Zn). Organic material contents were 0.050-0.88 % for HA and 0.01-1.21 % for FA. Measured pH values ranged from 6.99 to 7.92, conductivity from 0.26 to 4.49 mS/cm, and shrink/swell capacity from 34.37 to 54.11 %. The dataset was normalized using Min-Max scaling to ensure consistency and reduce bias. K-means clustering was applied to identify sediment profiles, yielding insights into pollution levels, soil fertility, and retention capacity. The integration of geochemical analysis with artificial intelligence (AI)-based clustering demonstrated the effectiveness of machine learning (ML) methods in classifying sediments based on heavy metal concentrations. Additionally, SEM analysis revealed distinct layered surface properties with nanoglobular structures ranging from 100 nm to less than 10 nm, offering further insights into the sediment characteristics and potential agricultural applications. This study underscores the importance of integrating AI techniques with traditional analyses to enhance sediment characterization and promote sustainable environmental management. | en_US |
| dc.description.sponsorship | Ondokuz Mayis University Project Office (BAP) [PYO.FEN.1904.20.007] | en_US |
| dc.description.sponsorship | This study was financially supported by Ondokuz Mayis University Project Office (BAP) (Project No: PYO.FEN.1904.20.007) . | en_US |
| dc.description.woscitationindex | Science Citation Index Expanded | |
| dc.identifier.doi | 10.1016/j.aca.2025.344730 | |
| dc.identifier.issn | 0003-2670 | |
| dc.identifier.issn | 1873-4324 | |
| dc.identifier.pmid | 41167892 | |
| dc.identifier.scopus | 2-s2.0-105018082442 | |
| dc.identifier.scopusquality | Q1 | |
| dc.identifier.uri | https://doi.org/10.1016/j.aca.2025.344730 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12712/39363 | |
| dc.identifier.volume | 1379 | en_US |
| dc.identifier.wos | WOS:001593372800002 | |
| dc.identifier.wosquality | Q1 | |
| dc.language.iso | en | en_US |
| dc.publisher | Elsevier | en_US |
| dc.relation.ispartof | Analytica Chimica Acta | en_US |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Machine Learning Algorithms | en_US |
| dc.subject | Sediment | en_US |
| dc.subject | Nanoglobule Structure | en_US |
| dc.subject | Heavy Metals | en_US |
| dc.subject | Humic Acid | en_US |
| dc.subject | K-Means Clustering | en_US |
| dc.title | Integration of Geochemical Analysis and K-Means Clustering for Sustainable Management of Various Dam Sediments | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication |
