Publication:
Integration of Geochemical Analysis and K-Means Clustering for Sustainable Management of Various Dam Sediments

dc.authorscopusid57211447089
dc.authorscopusid6602123654
dc.authorscopusid60130796200
dc.authorscopusid25960137000
dc.authorscopusid37031325400
dc.authorscopusid60130543900
dc.authorwosidKarakus, Selcan/D-1532-2019
dc.authorwosidAkarsu, Canan/Jze-3123-2024
dc.authorwosidKahyaoglu, Ibrahim Mizan/Hgv-1563-2022
dc.authorwosidKucukdeniz, Tarik/B-4253-2010
dc.contributor.authorKahyaoglu, Ibrahim Mizan
dc.contributor.authorUyanik, Ahmet
dc.contributor.authorAkarsu, Canan Hazal
dc.contributor.authorKucukdeniz, Tarik
dc.contributor.authorKarakus, Selcan
dc.contributor.authorGuney, Murat
dc.date.accessioned2025-12-11T00:47:59Z
dc.date.issued2025
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Kahyaoglu, Ibrahim Mizan; Uyanik, Ahmet] Ondokuz Mayis Univ, Sci Fac, Dept Chem, Samsun, Turkiye; [Akarsu, Canan Hazal; Kucukdeniz, Tarik] Istanbul Univ Cerrahpasa, Fac Engn, Dept Ind Engn, TR-34320 Istanbul, Turkiye; [Karakus, Selcan] Istanbul Univ Cerrahpasa, Fac Engn, Dept Chem, Istanbul, Turkiye; [Guney, Murat] Seyh Edebali Univ, Engn Fac, Dept Chem Engn, Bilecik, Turkiye; [Karakus, Selcan] Hlth Biotechnol Joint Res & Applicat Ctr Excellenc, TR-34220 Istanbul, Turkiyeen_US
dc.description.abstractOptimizing the use of existing dams can reduce the need for new construction and support sustainable dam management. In this study, key sediment parameters including humic acid (HA), fulvic acid (FA), %C, %H, %N, total organic matter (TOM), pH, conductivity, and shrink/swell capacity were analyzed. Heavy metal concentrations ranged from 1.62 to 7.74 mg/kg (As), 1.40-2.91 mg/kg (Cd), 6.79-18.44 mg/kg (Co), 19.46-85.61 mg/ kg (Cr), 21.12-63.60 mg/kg (Cu), 8000-46,500 mg/kg (Fe), 260-1120 mg/kg (Mn), 27.12-180 mg/kg (Ni), 2.52-10.22 mg/kg (Pb), and 30.50-88.10 mg/kg (Zn). Organic material contents were 0.050-0.88 % for HA and 0.01-1.21 % for FA. Measured pH values ranged from 6.99 to 7.92, conductivity from 0.26 to 4.49 mS/cm, and shrink/swell capacity from 34.37 to 54.11 %. The dataset was normalized using Min-Max scaling to ensure consistency and reduce bias. K-means clustering was applied to identify sediment profiles, yielding insights into pollution levels, soil fertility, and retention capacity. The integration of geochemical analysis with artificial intelligence (AI)-based clustering demonstrated the effectiveness of machine learning (ML) methods in classifying sediments based on heavy metal concentrations. Additionally, SEM analysis revealed distinct layered surface properties with nanoglobular structures ranging from 100 nm to less than 10 nm, offering further insights into the sediment characteristics and potential agricultural applications. This study underscores the importance of integrating AI techniques with traditional analyses to enhance sediment characterization and promote sustainable environmental management.en_US
dc.description.sponsorshipOndokuz Mayis University Project Office (BAP) [PYO.FEN.1904.20.007]en_US
dc.description.sponsorshipThis study was financially supported by Ondokuz Mayis University Project Office (BAP) (Project No: PYO.FEN.1904.20.007) .en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1016/j.aca.2025.344730
dc.identifier.issn0003-2670
dc.identifier.issn1873-4324
dc.identifier.pmid41167892
dc.identifier.scopus2-s2.0-105018082442
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1016/j.aca.2025.344730
dc.identifier.urihttps://hdl.handle.net/20.500.12712/39363
dc.identifier.volume1379en_US
dc.identifier.wosWOS:001593372800002
dc.identifier.wosqualityQ1
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofAnalytica Chimica Actaen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectMachine Learning Algorithmsen_US
dc.subjectSedimenten_US
dc.subjectNanoglobule Structureen_US
dc.subjectHeavy Metalsen_US
dc.subjectHumic Aciden_US
dc.subjectK-Means Clusteringen_US
dc.titleIntegration of Geochemical Analysis and K-Means Clustering for Sustainable Management of Various Dam Sedimentsen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files