Publication:
Estimating Missing Hourly Climatic Data Using Artificial Neural Network for Energy Balance Based ET Mapping Applications

dc.authorscopusid24344113900
dc.authorscopusid55976027400
dc.authorscopusid57203423809
dc.authorscopusid15727794100
dc.authorscopusid7102454805
dc.contributor.authorKöksal, Eyüp Selim
dc.contributor.authorCemek, B.
dc.contributor.authorÇetin, S.
dc.contributor.authorGowda, P.
dc.contributor.authorHowell, T.A.
dc.date.accessioned2020-06-21T13:19:06Z
dc.date.available2020-06-21T13:19:06Z
dc.date.issued2017
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Köksal] Eyüp Selim, Department of Agricultural Structures and Irrigation, Ondokuz Mayis Üniversitesi, Samsun, Turkey, Agrobigen Ltd. Co., Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Cemek] Bilal, Department of Agricultural Structures and Irrigation, Ondokuz Mayis Üniversitesi, Samsun, Turkey, Agrobigen Ltd. Co., Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Çetin] Sakine, Department of Agricultural Structures and Irrigation, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Gowda] Prasanna H., Forage and Livestock Production Research Unit, USDA ARS Grazinglands Research Laboratory, El Reno, OK, United States; [Howell] Terry A., USDA Agricultural Research Service, Washington, D.C., United Statesen_US
dc.description.abstractRemote sensing based evapotranspiration (ET) mapping has become an important tool for water resources management at a regional scale. Accurate hourly climatic data and alfalfa-reference ET (ETr) are crucial inputs for successfully implementing remote sensing based ET models such as Mapping Evapotranspiration at High Resolution with Internalized Calibration (METRIC) and Surface Energy Balance Algorithm for Land (SEBAL). In Turkey, hourly climatic data may not be available at all locations, either due to cost constraints or due to equipment malfunctioning. In this study, the artificial neural network (ANN) technique was used to estimate missing and unmeasured hourly climatic data and ETr for the agriculturally important semi-humid Bafra plains located in northern Turkey. Modelled and actual climatic data were used to derive ET maps from two Landsat 5 Thematic Mapper images acquired on 2 September 2009 and 4 August 2010. The METRIC algorithm was used to generate ET maps. Accuracy assessment of the METRIC-derived ET maps indicated that climatic data and ETr estimated through ANN could be used for accurately mapping ET, where hourly climatic data are missing or not measured. © 2017 Royal Meteorological Societyen_US
dc.identifier.doi10.1002/met.1644
dc.identifier.endpage465en_US
dc.identifier.issn1350-4827
dc.identifier.issn1469-8080
dc.identifier.issue3en_US
dc.identifier.scopus2-s2.0-85021312960
dc.identifier.scopusqualityQ2
dc.identifier.startpage457en_US
dc.identifier.urihttps://doi.org/10.1002/met.1644
dc.identifier.volume24en_US
dc.identifier.wosWOS:000405396000014
dc.identifier.wosqualityQ3
dc.language.isoenen_US
dc.publisherJohn Wiley and Sons Ltd vgorayska@wiley.com Southern Gate Chichester, West Sussex PO19 8SQen_US
dc.relation.ispartofMeteorological Applicationsen_US
dc.relation.journalMeteorological Applicationsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectArtificial Neural Networken_US
dc.subjectEvapotranspiration Mappingen_US
dc.subjectMetricen_US
dc.subjectMissing Climatic Dataen_US
dc.titleEstimating Missing Hourly Climatic Data Using Artificial Neural Network for Energy Balance Based ET Mapping Applicationsen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files