Publication:
MCSMOTE: A Transition Matrix-Driven Oversampling Technique for Class Imbalance

dc.authorscopusid57194769905
dc.authorscopusid12766595200
dc.authorwosidSağlam, Fatih/Aaa-4146-2022
dc.authorwosidCengiz, Mehmet/Agz-9391-2022
dc.contributor.authorSaglam, Fatih
dc.contributor.authorCengiz, Mehmet Ali
dc.date.accessioned2025-12-11T00:42:50Z
dc.date.issued2025
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Saglam, Fatih] Ondokuz Mayis Univ, Dept Stat, TR-55270 Samsun, Turkiye; [Cengiz, Mehmet Ali] Imam Mohammad Ibn Saud Islamic Univ IMSIU, Coll Sci, Dept Math & Stat, Riyadh, Saudi Arabiaen_US
dc.description.abstractClass imbalance presents a challenge in machine learning, often skewing predictive performance toward the majority class and undermining the accuracy of minority class predictions. To address this, we introduce MCSMOTE, a novel resampling method that employs a transition matrix-based Monte Carlo mechanism for generating synthetic samples. MCSMOTE differentiates itself by modeling the relationships among features and leveraging probabilistic transitions to generate synthetic data points that effectively capture the underlying data structure. This approach ensures enhanced representativeness of the minority class while approximating the local structure of the minority class and thereby generating samples that reflect the underlying data patterns. Comprehensive experiments across 63 diverse imbalanced datasets demonstrate that MCSMOTE consistently outperforms nine widely used resampling techniques-NORES, ROS, SMOTE, ADASYN, BLSMOTE, RWO, SMOTEWB, DeepSMOTE, RWO, and GQEO-when evaluated using multiple classifiers and six key performance metrics: balanced accuracy, F1-score, G-mean, MCC, ROCAUC, and ROCAUC. Results show that MCSMOTE achieves the highest average performance across all metrics. Friedman and Nemenyi tests confirm that these improvements are statistically significant. An ablation study further highlights the stability and effectiveness of MCSMOTE's hyperparameter choices across different data characteristics. These findings establish MCSMOTE as a powerful and reliable solution for addressing class imbalance in machine learning applications.en_US
dc.description.sponsorshipDeanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University (IMSIU) [IMSIU-DDRSP2503]en_US
dc.description.sponsorshipFunding This work was supported and funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University (IMSIU) (grant number IMSIU-DDRSP2503) .en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1016/j.asoc.2025.113906
dc.identifier.issn1568-4946
dc.identifier.issn1872-9681
dc.identifier.scopus2-s2.0-105017611435
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1016/j.asoc.2025.113906
dc.identifier.urihttps://hdl.handle.net/20.500.12712/38668
dc.identifier.volume185en_US
dc.identifier.wosWOS:001589596000001
dc.identifier.wosqualityQ1
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofApplied Soft Computingen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectClass Imbalanceen_US
dc.subjectSMOTEen_US
dc.subjectMarkov Chainen_US
dc.subjectOversamplingen_US
dc.subjectTransition Matrixen_US
dc.titleMCSMOTE: A Transition Matrix-Driven Oversampling Technique for Class Imbalanceen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files