Publication:
Comparison of Least Squares, Ridge Regression and Principal Component Approaches in the Presence of Multicollinearity in Regression Analysis

dc.contributor.authorAbacı, Samet Hasan
dc.contributor.authorCankaya, Soner
dc.contributor.authorEker, Samet
dc.date.accessioned2025-12-11T00:59:19Z
dc.date.issued2019
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-tempOndokuz Mayıs Üniversitesi,Ondokuz Mayıs Üniversitesi,T.C. Tarım Ve Orman Bakanlığıen_US
dc.description.abstractThe aim of this study was to compare estimation methods: least squares method (LS), ridgeregression (RR), Principal component regression (PCR) to estimate the parameters of multipleregression model in situations when the underlying assumptions of least squares estimation areuntenable because of multicollinearity. For this aim, the effect of some body measurements on bodyweights (height at withers and rumps, body length, chest width, chest girth and chest depth, front,middle and hind rump width) obtained from totally 85 Karayaka lambs at weaning period raised atResearch Farm of Ondokuz Mayis University was examined. Mean square error, R2 value andsignificance of parameters were used to evaluate estimator performance. The multicollinearity,between front and middle rump width which were used to estimate live weight, was eliminated byusing RR and PCR. Although research findings showed that RR method had the smallest MSE andthe highest R2 value, the estimates of PCR were determined to be more consistent when theimportance tests of parameters were taken into account. The results showed that principal componentregression approach should be used to estimate the live weight of Karayaka lambs at weaning period.en_US
dc.identifier.doi10.24925/turjaf.v7i8.1166-1172.2515
dc.identifier.endpage1172en_US
dc.identifier.issn2148-127X
dc.identifier.issue8en_US
dc.identifier.startpage1166en_US
dc.identifier.trdizinid354811
dc.identifier.urihttps://doi.org/10.24925/turjaf.v7i8.1166-1172.2515
dc.identifier.urihttps://search.trdizin.gov.tr/en/yayin/detay/354811/comparison-of-least-squares-ridge-regression-and-principal-component-approaches-in-the-presence-of-multicollinearity-in-regression-analysis
dc.identifier.urihttps://hdl.handle.net/20.500.12712/40635
dc.identifier.volume7en_US
dc.language.isoenen_US
dc.relation.ispartofTürk Tarım - Gıda Bilim ve Teknoloji Dergisien_US
dc.relation.publicationcategoryMakale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectTarımsal Ekonomi ve Politikaen_US
dc.subjectZiraat Mühendisliğien_US
dc.subjectİstatistik ve Olasılıken_US
dc.titleComparison of Least Squares, Ridge Regression and Principal Component Approaches in the Presence of Multicollinearity in Regression Analysisen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files