Publication:
Modified Artificial Bee Colony Algorithms for Solving Multiple Circle Detection Problem

dc.authorscopusid56294787600
dc.contributor.authorAslan, Selcuk
dc.date.accessioned2020-06-21T12:18:11Z
dc.date.available2020-06-21T12:18:11Z
dc.date.issued2021
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Aslan] Selcuk, Department of Computer Engineering, Ondokuz Mayis Üniversitesi, Samsun, Turkeyen_US
dc.description.abstractDetermining circular shapes from digital images is one of the most required operations in computer vision and its applications. Various techniques including evolutionary and swarm intelligence-based algorithms have been introduced and successfully used over the past decade for detecting single or multiple circles. In this study, two different circle candidate list generation approaches that are based on generating a combination between abandoned food sources and the obtained food sources in the final colony have been proposed and integrated into the workflow of the standard implementation of the artificial bee colony (ABC) algorithm. Experimental studies on a set of real and synthetic images showed that the proposed list generation approaches improved the solving capabilities of ABC algorithm and decreased the total error values related to the discovered circles compared to the ABC-based implementation for which a circle or circles are selected from a candidate list containing only abandoned food sources, genetic algorithm, bacterial foraging optimization algorithm and an improved version of the Hough transform-based circle detection technique called randomized Hough transform. © 2020, Springer-Verlag GmbH Germany, part of Springer Nature.en_US
dc.identifier.doi10.1007/s00371-020-01834-4
dc.identifier.endpage856en_US
dc.identifier.issn0178-2789
dc.identifier.issn1432-2315
dc.identifier.issue4en_US
dc.identifier.scopus2-s2.0-85082770401
dc.identifier.scopusqualityQ2
dc.identifier.startpage843en_US
dc.identifier.urihttps://doi.org/10.1007/s00371-020-01834-4
dc.identifier.volume37en_US
dc.identifier.wosWOS:000520668900001
dc.identifier.wosqualityQ2
dc.institutionauthorAslan, Selcuk
dc.language.isoenen_US
dc.publisherSpringer Science and Business Media Deutschland GmbHen_US
dc.relation.ispartofVisual Computeren_US
dc.relation.journalDiabetologiaen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectABC Algorithmen_US
dc.subjectCandidate List Generationen_US
dc.subjectMultiple Circle Detectionen_US
dc.titleModified Artificial Bee Colony Algorithms for Solving Multiple Circle Detection Problemen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files