Publication:
Prediction of Higher Heating Value of Hydrochars Using Bayesian Optimization Tuned Gaussian Process Regression Based on Biomass Characteristics and Process Conditions

dc.authorscopusid58247666500
dc.authorscopusid35399026000
dc.authorscopusid57210614739
dc.authorscopusid7003728792
dc.authorwosidCeylan, Selim/Lsj-5591-2024
dc.authorwosidAli, Imtiaz/S-3067-2016
dc.authorwosidCeylan, Zeynep/Aab-6945-2021
dc.contributor.authorKaya, Esma Yeliz
dc.contributor.authorAli, Imtiaz
dc.contributor.authorCeylan, Zeynep
dc.contributor.authorCeylan, Selim
dc.contributor.authorIDCeylan, Zeynep/0000-0002-3006-9768
dc.contributor.authorIDAli, Imtiaz/0000-0001-6303-6164
dc.date.accessioned2025-12-11T01:13:42Z
dc.date.issued2024
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Kaya, Esma Yeliz; Ceylan, Selim] Ondokuz Mayis Univ, Fac Engn, Chem Engn Dept, TR-55139 Kurupelit, Samsun, Turkiye; [Ali, Imtiaz] King Abdulaziz Univ, Dept Chem & Mat Engn, Rabigh, Saudi Arabia; [Ceylan, Zeynep] Samsun Univ, Fac Engn, Ind Engn Dept, TR-55420 Samsun, Turkiyeen_US
dc.descriptionCeylan, Zeynep/0000-0002-3006-9768; Ali, Imtiaz/0000-0001-6303-6164;en_US
dc.description.abstractHydrochars are valuable resources obtained from hydrothermal carbonization (HTC) of biomass. To optimize the reaction conditions of HTC, extensive experimentation is required, which is both costly and time consuming. In order to reduce the time and cost, this study develops new predictive models for higher heating values (HHV) of hydrochar based on Gaussian Process Regression (GPR), Ensemble, and Decision Tree (DT) algorithms using Bayesian Optimization (BO). This approach reduces prediction errors by combining GPR, Ensemble, and DT with BO. This is the first study on the application of BO for the hyperparameter selection as the basic learner. BO-GPR converged during training with the lowest Mean Absolute Error (0.1783) compared to BO-Ensemble (0.5128) and BO-DT (0.7430). The efficiencies of the algorithms were measured by the Mean Absolute Error (MAE), Root Mean Square Error (RMSE) and coefficient of determination (R2). During the testing, BO-GPR generated MAE, RMSE and R2 of 0.4435, 0.5961 and 0.9705, respectively, and performed better than BO-Ensemble and BO-DT. The Nemenyi test showed that BO-GPR, BO-Ensemble, and BO-DT were statistically different in terms of their prediction ability. BO-GPR outperformed the other two methods.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1016/j.biombioe.2023.106993
dc.identifier.issn0961-9534
dc.identifier.issn1873-2909
dc.identifier.scopus2-s2.0-85178320572
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1016/j.biombioe.2023.106993
dc.identifier.urihttps://hdl.handle.net/20.500.12712/42163
dc.identifier.volume180en_US
dc.identifier.wosWOS:001127501800001
dc.identifier.wosqualityQ1
dc.language.isoenen_US
dc.publisherPergamon-Elsevier Science Ltden_US
dc.relation.ispartofBiomass & Bioenergyen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectHydrocharen_US
dc.subjectHydrothermal Carbonizationen_US
dc.subjectBiomassen_US
dc.subjectMachine Learningen_US
dc.subjectMetadata Analysisen_US
dc.subjectBayesian Optimizationen_US
dc.titlePrediction of Higher Heating Value of Hydrochars Using Bayesian Optimization Tuned Gaussian Process Regression Based on Biomass Characteristics and Process Conditionsen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files