Publication:
The Comparison of Machine Learning Classification Algorithms Used to Diagnose Liver Cirrhosis Disease and a Brief Review

dc.authorscopusid57216611788
dc.authorscopusid54581049600
dc.authorscopusid58083726300
dc.authorwosidKasap, Pelin/Aam-7529-2021
dc.authorwosidZorlu, Burçin Şeyda/Hji-6325-2023
dc.contributor.authorGunes, Oguzhan Mehmet
dc.contributor.authorKasap, Pelin
dc.contributor.authorZorlu, Burcin Seyda Corba
dc.contributor.authorIDKasap, Pelin/0000-0002-1106-710X
dc.date.accessioned2025-12-11T01:03:48Z
dc.date.issued2023
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Gunes, Oguzhan Mehmet; Kasap, Pelin; Zorlu, Burcin Seyda Corba] Univ Ondokuz Mayis, Dept Stat, Samsun, Turkiyeen_US
dc.descriptionKasap, Pelin/0000-0002-1106-710X;en_US
dc.description.abstractLiver cirrhosis disease is an important cause of death worldwide. Therefore, early diagnosis of the disease is very important. Machine learning algorithms are frequently used due to its high performance in the field of health, as in many areas. In this study, Multilayer Perceptron-Artificial Neural Networks, Decision Trees, Random Forest, Naive Bayes, Support Vector Machines, K-Nearest Neighborhood, and Logistic Regression classification algorithms are used to classify the factors affecting liver cirrhosis. The performances of these algorithms are compared according to the accuracy rate, F measure, sensitivity, specificity and Kappa score on real data obtained from 2000 liver cirrhosis patients, and the factors affecting the disease are classified with the most appropriate algorithm. In addition, more than 50 articles covering both liver disease and classification methods are reviewed and the latest developments are presented in the study.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1002/cpe.7628
dc.identifier.issn1532-0626
dc.identifier.issn1532-0634
dc.identifier.issue8en_US
dc.identifier.scopus2-s2.0-85147115249
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.1002/cpe.7628
dc.identifier.urihttps://hdl.handle.net/20.500.12712/41047
dc.identifier.volume35en_US
dc.identifier.wosWOS:000919783300001
dc.identifier.wosqualityQ3
dc.language.isoenen_US
dc.publisherWileyen_US
dc.relation.ispartofConcurrency and Computation: Practice & Experienceen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDecision Treesen_US
dc.subjectK-NNen_US
dc.subjectLiver Cirrhosisen_US
dc.subjectMachine Learningen_US
dc.subjectMLP-ANNsen_US
dc.subjectRandom Foresten_US
dc.subjectSVMen_US
dc.titleThe Comparison of Machine Learning Classification Algorithms Used to Diagnose Liver Cirrhosis Disease and a Brief Reviewen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files