Publication:
Low-Resource Neural Machine Translation: A Systematic Literature Review

dc.authorscopusid57212212990
dc.authorscopusid56589621700
dc.authorscopusid22953804000
dc.authorwosidSahin, Durmus/Aaj-7961-2020
dc.authorwosidKiliç, Erdal/Hjy-2853-2023
dc.contributor.authorYazar, Bilge Kagan
dc.contributor.authorSahin, Durmus Ozkan
dc.contributor.authorKilic, Erdal
dc.contributor.authorIDYazar, Bilge Kağan/0000-0003-2149-142X
dc.contributor.authorIDKiliç, Erdal/0000-0003-1585-0991
dc.date.accessioned2025-12-11T01:18:51Z
dc.date.issued2023
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Yazar, Bilge Kagan; Sahin, Durmus Ozkan; Kilic, Erdal] Ondokuz Mayis Univ, Fac Engn, TR-55139 Samsun, Turkiyeen_US
dc.descriptionYazar, Bilge Kağan/0000-0003-2149-142X; Kiliç, Erdal/0000-0003-1585-0991en_US
dc.description.abstractIn this study, a systematic literature review was conducted to examine the significant works in the literature on low-resource neural machine translation. Within the scope of the study, three research questions were identified to examine the low-resource neural machine translation literature. According to the inclusion and exclusion criteria, 45 studies were selected for review. After the relevant studies were identified, three research questions were aimed to be answered. The first research question is to identify the study directions and language pairs used in low-resource neural machine translation. The second research question aims to identify which deep learning methods are used in low-resource neural machine translation and which metrics are used to evaluate these methods. The third research question is to determine the bilingual and monolingual corpora used in the studies and the preferred development environments. In addition, the studies with the most commonly used language pairs were analyzed, and directions for future studies were made.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1109/ACCESS.2023.3336019
dc.identifier.endpage131813en_US
dc.identifier.issn2169-3536
dc.identifier.scopus2-s2.0-85178050639
dc.identifier.scopusqualityQ1
dc.identifier.startpage131775en_US
dc.identifier.urihttps://doi.org/10.1109/ACCESS.2023.3336019
dc.identifier.urihttps://hdl.handle.net/20.500.12712/42780
dc.identifier.volume11en_US
dc.identifier.wosWOS:001112754500001
dc.identifier.wosqualityQ2
dc.language.isoenen_US
dc.publisherIEEE-Inst Electrical Electronics Engineers Incen_US
dc.relation.ispartofIEEE Accessen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectNeural Machine Translationen_US
dc.subjectLow Resource Languagesen_US
dc.subjectEvaluation Criteriaen_US
dc.subjectDeep Learningen_US
dc.titleLow-Resource Neural Machine Translation: A Systematic Literature Reviewen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files