Publication:
Outlier Detection with Robust Exact and Fast Least Trimmed Squares Methods in Coordinate Transformation

dc.authorscopusid58189699800
dc.authorscopusid36504950300
dc.authorscopusid57144651100
dc.contributor.authorDilmaç, H.
dc.contributor.authorŞişman, Yasemin
dc.contributor.authorMaciuk, K.
dc.date.accessioned2025-12-11T00:31:52Z
dc.date.issued2023
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Dilmaç] Hasan, Department of Geomatics Engineering, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Şişman] Yasemin, Department of Geomatics Engineering, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Maciuk] Kamil, AGH University of Krakow, Krakow, MP, Polanden_US
dc.description.abstractDifferent terrestrial reference systems have been defined and used because of some practical and historical events in geodesy domain. The transition from one system to another requires the coordinate transformation. Helmert transformation is the most commonly used model for 2D networks. 2D Helmert transformation are defined by four transformation parameters and two common points in both coordinate systems provides a unique solution. To increase the reliability of the transformation parameters, redundant observations are generally used. In this case, the Least Squares (LS) is the most common method used to obtain the unique solution from redundant observations. However, outliers occur often in dataset and affect severely the results of LS. There are generally two approaches applied for outlier detection: classical outlier tests and robust methods. The most common robust methods are Least Absolute Deviation (L<inf>1</inf> ), M-estimators, the Total Least Squares (TLS), Generalised M-estimators, the Least Median of Squares (LMS) and the Least Trimmed Squares (LTS). For the solution of the LTS method, there are exact and approximate solutions. In this study, 2D Helmert transformation parameters between ED50 and ITRF coordinates are esti-mated with the LS method including classical outlier test, exact LTS solution and Fast-LTS solution which is an approximate solution to compare outlier detection performances of the methods. © 2023, Croatian Geodetic Society. All rights reserved.en_US
dc.identifier.endpage124en_US
dc.identifier.issue2en_US
dc.identifier.scopus2-s2.0-85174024233
dc.identifier.scopusqualityN/A
dc.identifier.startpage109en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12712/37058
dc.identifier.volume77en_US
dc.identifier.wosqualityN/A
dc.language.isoenen_US
dc.publisherCroatian Geodetic Societyen_US
dc.relation.ispartofGeodetski Listen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCoordinate Transformationen_US
dc.subjectED50en_US
dc.subjectGNSSen_US
dc.subjectITRFen_US
dc.subjectLTSen_US
dc.subjectOutlier Detectionen_US
dc.subjectRobust Solutionen_US
dc.subjectThe Least Squaresen_US
dc.subjectThe Least Trimmed Squaresen_US
dc.subjectTLSen_US
dc.titleOutlier Detection with Robust Exact and Fast Least Trimmed Squares Methods in Coordinate Transformationen_US
dc.title.alternativeOtkrivanje Grubih Pogrešaka Uz Pomoć Robusnih Točnih I Brzih Metoda Regresije Najmanjih Kvadrata U Transformaciji Koordinataen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files