Publication:
Demonstrating the Suitability of Canola Residue Biomass to Biofuel Conversion via Pyrolysis Through Reaction Kinetics, Thermodynamics and Evolved Gas Analyses

dc.authorscopusid57201382060
dc.authorscopusid57205605969
dc.authorscopusid23667181100
dc.authorscopusid6603007969
dc.authorscopusid56080402500
dc.authorscopusid7003728792
dc.contributor.authorTahir, M.H.
dc.contributor.authorÇakman, G.
dc.contributor.authorGoldfarb, J.L.
dc.contributor.authorTopcu, Y.
dc.contributor.authorNaqvi, S.R.
dc.contributor.authorCeylan, S.
dc.date.accessioned2020-06-21T12:27:09Z
dc.date.available2020-06-21T12:27:09Z
dc.date.issued2019
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Tahir] Mudassir Hussain, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, China; [Çakman] Gulce, Department of Chemical Engineering, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Goldfarb] Jillian L., Department of Biological and Environmental Engineering, Ithaca, NY, United States; [Topcu] Yildiray, Department of Chemical Engineering, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Naqvi] Salman Raza, School of Chemical & Materials Engineering, National University of Sciences and Technology, Islamabad, Pakistan; [Ceylan] Selim, Department of Chemical Engineering, Ondokuz Mayis Üniversitesi, Samsun, Turkeyen_US
dc.description.abstractThe identification of biomasses for pyrolytic conversion to biofuels depends on many factors, including: moisture content, elemental and volatile matter composition, thermo-kinetic parameters, and evolved gases. The present work illustrates how canola residue may be a suitable biofuel feedstock for low-temperature (<450 °C) slow pyrolysis with energetically favorable conversions of up to 70 wt% of volatile matter. Beyond this point, thermo-kinetic parameters and activation energies, which increase from 154.3 to 400 kJ/mol from 65 to 80% conversion, suggest that the energy required to initiate conversion is thermodynamically unfavorable. This is likely due to its higher elemental carbon content than similar residues, leading to enhanced carbonization rather than devolatilization at higher temperatures. Evolved gas analysis supports limiting pyrolysis temperature; ethanol and methane conversions are maximized below 500 °C with ∼6% water content. Carbon dioxide is the dominant evolved gas beyond this temperature. © 2019 Elsevier Ltden_US
dc.identifier.doi10.1016/j.biortech.2019.01.106
dc.identifier.endpage73en_US
dc.identifier.issn0960-8524
dc.identifier.issn1873-2976
dc.identifier.pmid30711754
dc.identifier.scopus2-s2.0-85060766201
dc.identifier.scopusqualityQ1
dc.identifier.startpage67en_US
dc.identifier.urihttps://doi.org/10.1016/j.biortech.2019.01.106
dc.identifier.volume279en_US
dc.identifier.wosWOS:000458999200009
dc.identifier.wosqualityQ1
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.relation.ispartofBioresource Technologyen_US
dc.relation.journalBioresource Technologyen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBiomassen_US
dc.subjectCanola Residueen_US
dc.subjectEvolved Gas Analysisen_US
dc.subjectKineticsen_US
dc.subjectPyrolysisen_US
dc.subjectThermodynamicsen_US
dc.titleDemonstrating the Suitability of Canola Residue Biomass to Biofuel Conversion via Pyrolysis Through Reaction Kinetics, Thermodynamics and Evolved Gas Analysesen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files