Publication:
Adaptive Weighted Information Criterion to Determine the Best Architecture

dc.authorscopusid23092915500
dc.authorscopusid23093703600
dc.contributor.authorAladag, C.H.
dc.contributor.authorEgrioglu, E.
dc.date.accessioned2020-06-21T09:28:36Z
dc.date.available2020-06-21T09:28:36Z
dc.date.issued2012
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Aladag] Cagdas Hakan, Department of Statistics, Hacettepe Üniversitesi, Ankara, Turkey; [Egrioglu] Erol, Department of Statistics, Ondokuz Mayis Üniversitesi, Samsun, Turkeyen_US
dc.description.abstractIn the literature, different selection criteria are used for determining the best architecture when time series is analyzed by artificial neural networks. Criteria available in the literature measure different properties of forecasts. To obtain better forecasts, Eǧrioǧlu et al. [1] proposed a criterion which can measure all properties of forecasts. Aladag et al. [2] improved the criterion proposed by [1] by using optimization. In this study, both the weighted information criterion proposed by Eǧrioǧlu et al. [1] and the adaptive weighted information criterion proposed by Aladag et al. [2] are introduced. These criteria are used in the architecture selection to analyze time series which are the import values of Turkey and the air pollution records in Ankara. As a result of computations, obtained results are compared and discussed. As a result of the comparison, it is seen that adaptive weighted information criterion produce more consistent results. © 2012 Bentham Science Publishers. All rights reserved.en_US
dc.identifier.doi10.2174/978160805373511201010034
dc.identifier.endpage39en_US
dc.identifier.isbn9781608055227
dc.identifier.scopus2-s2.0-84882697682
dc.identifier.startpage34en_US
dc.identifier.urihttps://doi.org/10.2174/978160805373511201010034
dc.language.isoenen_US
dc.publisherBentham Science Publishers Ltd.en_US
dc.relation.journalAdvances in Time Series Forecastingen_US
dc.relation.publicationcategoryKitap Bölümü - Uluslararasıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectArtificial Neural Networksen_US
dc.subjectForecastingen_US
dc.subjectModel Selection Criterionen_US
dc.subjectTime Seriesen_US
dc.titleAdaptive Weighted Information Criterion to Determine the Best Architectureen_US
dc.typeBook Parten_US
dspace.entity.typePublication

Files