Publication:
Effect of Vermicompost Application on the Development of Plant Properties and Root Architecture Analysis with Machine Learning in Buxus Herlandii

dc.authorscopusid57212405265
dc.authorscopusid59899942400
dc.authorscopusid6507162523
dc.authorwosidÇelikel, Fisun/Iyj-5022-2023
dc.contributor.authorSari, Omer
dc.contributor.authorEnginsu, Elif
dc.contributor.authorCelikel, Fisun Gursel
dc.date.accessioned2025-12-11T00:37:26Z
dc.date.issued2025
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Sari, Omer] Black Sea Agr Res Inst, Dept Hort, Samsun, Turkiye; [Enginsu, Elif] Black Sea Agr Res Inst, Soil & Water Resources Dept, Samsun, Turkiye; [Celikel, Fisun Gursel] Ondokuz Mayis Univ, Dept Hort, Samsun, Turkiyeen_US
dc.description.abstractThe effects of liquid vermicompost (commercial product) on nutrient content, root architecture, and plant development were studied at doses of 0, 10, 20, 40, and 80 mL center dot pot(-1). Significant increases in plant height (3.5%), shoot length (25%), leaf width (16.9%), and leaf length (15.8%) were observed at the 40 mL center dot pot(-1) application compared to the control group. The highest number of shoots was observed at 10 mL center dot pot(-1), while the 80 mL center dot pot(-1) application led to a 3.9% reduction in shoot count. Root architecture showed a general decline compared to the control, though root length and tips number increased with 10 mL center dot pot(-1), and root volume was highest at 40 mL center dot pot(-1). However, high doses (40 and 80 mL center dot pot(-1)) caused a decrease in root surface area, forks number, and root crossings number. The highest nitrogen (31%) and manganese (57%) values were found at 10 mL center dot pot(-1). Phosphorus (-41%) and magnesium (40%) were lowest at 80 mL center dot pot(-1), while zinc (-46%) was lowest at 10 mL center dot pot(-1). The highest potassium content was recorded at 40 mL center dot pot(-1) (58%). The highest calcium (1.2%), iron (23%), and copper (77%) levels were obtained at 20 mL center dot pot(-1). Machine learning algorithms used for root growth prediction showed the following performance ranking: PART > J48 > Multilayer Perceptron > Multi-Class Classifier. These findings provide valuable insights for predicting root growth in Buxus cropsen_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.2478/fhort-2025-0005
dc.identifier.endpage64en_US
dc.identifier.issn0867-1761
dc.identifier.issn2083-5965
dc.identifier.issue1en_US
dc.identifier.scopus2-s2.0-105005342119
dc.identifier.scopusqualityQ2
dc.identifier.startpage49en_US
dc.identifier.urihttps://doi.org/10.2478/fhort-2025-0005
dc.identifier.urihttps://hdl.handle.net/20.500.12712/37978
dc.identifier.volume37en_US
dc.identifier.wosWOS:001487884900001
dc.identifier.wosqualityQ2
dc.language.isoenen_US
dc.publisherSciendoen_US
dc.relation.ispartofFolia Horticulturaeen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectBuxusen_US
dc.subjectGrowingen_US
dc.subjectMachine Learningen_US
dc.subjectNutrient Contenten_US
dc.subjectRoot Analysingen_US
dc.subjectVermicomposten_US
dc.titleEffect of Vermicompost Application on the Development of Plant Properties and Root Architecture Analysis with Machine Learning in Buxus Herlandiien_US
dc.typeArticleen_US
dspace.entity.typePublication

Files