Publication:
Apk2audio4andmal: Audio Based Malware Family Detection Framework

dc.authorscopusid57190738698
dc.authorscopusid22953804000
dc.authorscopusid58166289600
dc.authorwosidKiliç, Erdal/Hjy-2853-2023
dc.contributor.authorKural, Oguz Emre
dc.contributor.authorKilic, Erdal
dc.contributor.authorAksac, Ceyda
dc.contributor.authorIDKiliç, Erdal/0000-0003-1585-0991
dc.contributor.authorIDKural, Oğuz Emre/0000-0002-8406-4823
dc.date.accessioned2025-12-11T01:19:24Z
dc.date.issued2023
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Kural, Oguz Emre; Kilic, Erdal] Ondokuz Mayis Univ, Dept Comp Engn, TR-55139 Samsun, Turkiye; [Aksac, Ceyda] Ronesans Holding, TR-06540 Ankara, Turkiyeen_US
dc.descriptionKiliç, Erdal/0000-0003-1585-0991; Kural, Oğuz Emre/0000-0002-8406-4823en_US
dc.description.abstractDue to Android's popularity, cybercriminals view it as a lucrative target. Malwares with varying behavior patterns that specifically target user routines are constantly entering the market. Because of this, knowing how to identify different forms of malware is crucial for protecting against it. This paper proposes an audio-based malware family detection approach to achieve this goal. Android applications were converted to audio files in.wav format, and their audio-based features were extracted. Then, CFS-Subset, ReliefF, Information Gain, and Gain Ratio feature selection methods were applied to the extracted features. By examining the subsets obtained, features with high discrimination in Android malware family detection were determined. Classification experiments were conducted with the dataset created by randomly selected 500 samples from 8 families in AMD and Drebin datasets. Experiments with five different classifiers showed that effective malware family classification could be made with a small number of features in the audio domain.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1109/ACCESS.2023.3258377
dc.identifier.endpage27535en_US
dc.identifier.issn2169-3536
dc.identifier.scopus2-s2.0-85151335276
dc.identifier.scopusqualityQ1
dc.identifier.startpage27527en_US
dc.identifier.urihttps://doi.org/10.1109/ACCESS.2023.3258377
dc.identifier.urihttps://hdl.handle.net/20.500.12712/42847
dc.identifier.volume11en_US
dc.identifier.wosWOS:000958788300001
dc.identifier.wosqualityQ2
dc.language.isoenen_US
dc.publisherIEEE-Inst Electrical Electronics Engineers Incen_US
dc.relation.ispartofIEEE Accessen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectFeature Extractionen_US
dc.subjectMalwareen_US
dc.subjectOperating Systemsen_US
dc.subjectClassification Algorithmsen_US
dc.subjectStatic Analysisen_US
dc.subjectBandwidthen_US
dc.subjectSpectrogramen_US
dc.subjectAndroiden_US
dc.subjectMalware Detectionen_US
dc.subjectFamily Classificationen_US
dc.subjectAudio Baseden_US
dc.subjectFeature Selectionen_US
dc.subjectMachine Learningen_US
dc.titleApk2audio4andmal: Audio Based Malware Family Detection Frameworken_US
dc.typeArticleen_US
dspace.entity.typePublication

Files