Publication:
Multilayer Perceptron Neural Network Approach to Estimate Chlorophyll Concentration Index of Lettuce (Lactuca sativa L.)

dc.authorscopusid21743556600
dc.authorscopusid57197005919
dc.authorscopusid7410144493
dc.authorscopusid36084505100
dc.contributor.authorOdabaş, M.S.
dc.contributor.authorSimsek, H.
dc.contributor.authorLee, C.W.
dc.contributor.authorIşeri, I.
dc.date.accessioned2020-06-21T13:27:59Z
dc.date.available2020-06-21T13:27:59Z
dc.date.issued2017
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Odabaş] Mehmet Serhat, Vocational High School of Bafra, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Simsek] Halis, NDSU College of Engineering, Fargo, ND, United States; [Lee] Chiwon, Department of Plant Sciences, North Dakota State University, Fargo, ND, United States; [Işeri] Ismail, Department of Computer Engineering, Ondokuz Mayis Üniversitesi, Samsun, Turkeyen_US
dc.description.abstractNitrogen is an essential nutrient for greenhouse-grown lettuce (Lactuca sativa L.); however, excessive nutrient availability causes disease and detrimental effects on the leaf and root development. In this study, nitrogen content of the lettuce leaves was estimated by determining the chlorophyll concentrations of the leaves using image processing technique. The Hoagland solution was used as a fertilizer in five different doses (control, quarter of the solution, half of the solution, standard solution, and two times more of the solution). Multilayer perceptron neural network (MLPNN) model was developed based on the red, green, and blue components of the color image captured to estimate chlorophyll content and chlorophyll concentration index (SPAD values). According to the obtained results, the MLPNN model was capable of estimating the lettuce leaf chlorophyll content with a reasonable accuracy. The coefficient of determination was 0.98, and mean square error was 0.006 in validation process. © 2017 Taylor & Francis.en_US
dc.identifier.doi10.1080/00103624.2016.1253726
dc.identifier.endpage169en_US
dc.identifier.issn0010-3624
dc.identifier.issn1532-2416
dc.identifier.issue2en_US
dc.identifier.scopus2-s2.0-85013275716
dc.identifier.scopusqualityQ2
dc.identifier.startpage162en_US
dc.identifier.urihttps://doi.org/10.1080/00103624.2016.1253726
dc.identifier.volume48en_US
dc.identifier.wosWOS:000395185200003
dc.identifier.wosqualityQ3
dc.language.isoenen_US
dc.publisherTaylor and Francis Inc. 325 Chestnut St, Suite 800 Philadelphia PA 19106en_US
dc.relation.ispartofCommunications in Soil Science and Plant Analysisen_US
dc.relation.journalCommunications in Soil Science and Plant Analysisen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectArtificial Neural Networken_US
dc.subjectChlorophyllen_US
dc.subjectLeafen_US
dc.subjectLettuceen_US
dc.subjectModelingen_US
dc.subjectSPADen_US
dc.titleMultilayer Perceptron Neural Network Approach to Estimate Chlorophyll Concentration Index of Lettuce (Lactuca sativa L.)en_US
dc.typeArticleen_US
dspace.entity.typePublication

Files