Publication:
⊕-Supplemented Lattices

dc.authorscopusid57202735203
dc.authorscopusid36142255600
dc.contributor.authorBiçer, C.
dc.contributor.authorNebiyev, C.
dc.date.accessioned2020-06-21T13:04:58Z
dc.date.available2020-06-21T13:04:58Z
dc.date.issued2019
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Biçer] Çiğdem, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Nebiyev] Celil, Ondokuz Mayis Üniversitesi, Samsun, Turkeyen_US
dc.description.abstractIn tliis work, ⊕-supplemented and strongly ⊕-supplemented lattices are defined and investigated some properties of these lattices. Let L be a lattice and 1 = a<inf>1</inf> ⊕ a<inf>2</inf> ⊕ ... ⊕ a<inf>n</inf> with a<inf>1</inf>, a<inf>2</inf>,..., a<inf>n</inf> ∉ L. If a<inf>i</inf>/0 is ⊕-supplemented for each i = 1,2,..., n, then L is also ⊕-supplemented. Let L be a distributive lattice and 1 = a<inf>1</inf>⊕a<inf>2</inf> ⊕ ... ⊕ a<inf>n</inf> with a<inf>1</inf>, a<inf>2</inf>,....,a<inf>n</inf> ε L. If a<inf>i</inf>/0 is strongly ⊕-supplemented for each i = 1,2,..., n, then L is also strongly ⊕-supplemented. A lattice L has (D1) property if and only if L is amply supplemented and strongly ⊕-supplemented. © 2019 Miskolc University Press.en_US
dc.identifier.doi10.18514/MMN.2019.2806
dc.identifier.endpage780en_US
dc.identifier.issn1787-2405
dc.identifier.issn1787-2413
dc.identifier.issue2en_US
dc.identifier.scopus2-s2.0-85077681513
dc.identifier.scopusqualityQ3
dc.identifier.startpage773en_US
dc.identifier.urihttps://doi.org/10.18514/MMN.2019.2806
dc.identifier.volume20en_US
dc.identifier.wosWOS:000504461100010
dc.identifier.wosqualityQ2
dc.language.isoenen_US
dc.publisherUniversity of Miskolc matronto@uni-miskolc.huen_US
dc.relation.ispartofMiskolc Mathematical Notesen_US
dc.relation.journalMiskolc Mathematical Notesen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectComplemented Latticesen_US
dc.subjectLatticesen_US
dc.subjectSmall Elementsen_US
dc.subjectSupplemented Latticesen_US
dc.title⊕-Supplemented Latticesen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files